Files
tinygrad/docs/abstractions3.py
George Hotz 744af193f0 remove ScheduleItem and merge it with ExecItem (#13759)
* remove ExecItem and merge it with ScheduleItem

* less diff

* fix issues

* min diff

* don't change bufs in _lower

* min diff

* update

* revert

* fixes

* diff
2025-12-19 17:04:24 -04:00

57 lines
1.5 KiB
Python

# abstractions2 goes from back to front, here we will go from front to back
from typing import List
from tinygrad.helpers import tqdm
# *****
# 0. Load mnist on the device
from tinygrad.nn.datasets import mnist
X_train, Y_train, _, _ = mnist()
X_train = X_train.float()
X_train -= X_train.mean()
# *****
# 1. Define an MNIST model.
from tinygrad import Tensor
l1 = Tensor.kaiming_uniform(128, 784)
l2 = Tensor.kaiming_uniform(10, 128)
def model(x): return x.flatten(1).dot(l1.T).relu().dot(l2.T)
l1n, l2n = l1.numpy(), l2.numpy()
# *****
# 2. Choose a batch for training and do the backward pass.
from tinygrad.nn.optim import SGD
optim = SGD([l1, l2])
Tensor.training = True
X, Y = X_train[(samples:=Tensor.randint(128, high=X_train.shape[0]))], Y_train[samples]
optim.zero_grad()
model(X).sparse_categorical_crossentropy(Y).backward()
optim.schedule_step() # this will step the optimizer without running realize
# *****
# 3. Create a schedule.
# The weight Tensors have been assigned to, but not yet realized. Everything is still lazy at this point
# l1.uop and l2.uop define a computation graph
from tinygrad.engine.schedule import ExecItem
schedule: List[ExecItem] = Tensor.schedule(l1, l2)
print(f"The schedule contains {len(schedule)} items.")
for si in schedule: print(str(si)[:80])
# *****
# 4. Lower and run the schedule.
for si in tqdm(schedule): si.run()
# *****
# 5. Print the weight change
print("first weight change\n", l1.numpy()-l1n)
print("second weight change\n", l2.numpy()-l2n)