mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-12 07:35:16 -05:00
* models matrix * fix typo and install gpu deps * install llvm deps if needed * fix * testops with cuda * remove pip cache since not work * cuda env * install cuda deps * maybe it will work now * i can't read * all tests in matrix * trim down more * opencl stuff in matrix * opencl pip cache * test split * change cuda test exclusion * test * fix cuda maybe * add models * add more n=auto * third thing * fix bug * cache pip more * change name * update tests * try again cause why not * balance * try again... * try apt cache for cuda * try on gpu: * try cuda again * update packages step * replace libz-dev with zlib1g-dev * only cache cuda * why error * fix gpuocelot bug * apt cache err * apt cache to slow? * opt and image in single runner * add a couple n=autos * remove test matrix * try cuda apt cache again * libz-dev -> zlib1g-dev * remove -s since not supported by xdist * the cache takes too long and doesn't work * combine webgpu and metal tests * combine imagenet to c and cpu tests * torch tests with linters * torch back by itself * small windows clang test with torch tests * fix a goofy windows bug * im dumb * bro * clang with linters * fix pylint error * linter not work on windows * try with clang again * clang and imagenet? * install deps * fix * fix quote * clang by itself (windows too slow) * env vars for imagenet * cache pip for metal and webgpu tests * try torch with metal and webgpu * doesn't work, too long * remove -v * try -n=logical * don't use logical * revert accidental thing * remove some prints unless CI * fix print unless CI * ignore speed tests for slow tests * clang windows in matrix (ubuntu being tested in imagenet->c test) * try manual pip cache * fix windows pip cache path * all manual pip cache * fix pip cache dir for macos * print_ci function in helpers * CI as variable, no print_ci * missed one * cuda tests with docker image * remove setup-python action for cuda * python->python3? * remove -s -v * try fix pip cache * maybe fix * try to fix pip cache * is this the path? * maybe cache pip * try again * create wheels dir * ? * cuda pip deps in dockerfile * disable pip cache for clang * image from ghcr instead of docker hub * why is clang like this * fast deps * try use different caches * remove the fast thing * try with lighter image * remove setup python for cuda * small docker and cuda fast deps * ignore a few more tests * cool docker thing (maybe) * oops * quotes * fix docker command * fix bug * ignore train efficientnet test * remove dockerfile (docker stuff takes too long) * remove docker stuff and normal cuda * oops * ignore the tests for cuda * does this work * ignore test_train on slow backends * add space * llvm ignore same tests as cuda * nvm * ignore lr scheduler tests * get some stats * fix ignore bug * remove extra ' * remove and * ignore test for llvm * change ignored tests and durationon all backends * fix * and -> or * ignore some more cuda tests * finally? * does this fix it * remove durations=0 * add some more tests to llvm * make last pytest more readable * fix * don't train efficientnet on cpu * try w/out pip cache * pip cache seems to be generally better * pytest file markers * try apt fast for cuda * use quick install for apt-fast * apt-fast not worth * apt-get to apt * fix typo * suppress warnings * register markers * disable debug on fuzz tests * change marker names * apt update and apt install in one command * update marker names in test.yml * webgpu pytest marker
163 lines
5.9 KiB
Python
163 lines
5.9 KiB
Python
import torch
|
|
from torch import nn
|
|
import unittest
|
|
import numpy as np
|
|
from tinygrad.state import get_parameters, get_state_dict
|
|
from tinygrad.nn import optim, Linear, Conv2d, BatchNorm2d
|
|
from tinygrad.tensor import Tensor
|
|
from extra.datasets import fetch_mnist
|
|
from tinygrad.helpers import CI
|
|
|
|
def compare_tiny_torch(model, model_torch, X, Y):
|
|
Tensor.training = True
|
|
model_torch.train()
|
|
model_state_dict = get_state_dict(model)
|
|
for k,v in model_torch.named_parameters():
|
|
if not CI: print(f"initting {k} from torch")
|
|
model_state_dict[k].assign(Tensor(v.detach().numpy())).realize()
|
|
|
|
optimizer = optim.SGD(get_parameters(model), lr=0.01)
|
|
optimizer_torch = torch.optim.SGD(model_torch.parameters(), lr=0.01)
|
|
|
|
Xt = torch.Tensor(X.numpy())
|
|
np.testing.assert_allclose(X.numpy(), Xt.detach().numpy())
|
|
|
|
out = model(X)
|
|
loss = (out * Y).mean()
|
|
if not CI: print(loss.realize().numpy())
|
|
|
|
out_torch = model_torch(torch.Tensor(X.numpy()))
|
|
loss_torch = (out_torch * torch.Tensor(Y.numpy())).mean()
|
|
if not CI: print(loss_torch.detach().numpy())
|
|
|
|
# assert losses match
|
|
np.testing.assert_allclose(loss.realize().numpy(), loss_torch.detach().numpy(), atol=1e-4)
|
|
|
|
# zero and backward
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer_torch.zero_grad()
|
|
loss_torch.backward()
|
|
|
|
for k,v in list(model_torch.named_parameters())[::-1]:
|
|
g = model_state_dict[k].grad.numpy()
|
|
gt = v.grad.detach().numpy()
|
|
if not CI: print("testing grads", k)
|
|
np.testing.assert_allclose(g, gt, atol=1e-3, err_msg=f'grad mismatch {k}')
|
|
|
|
# take the steps
|
|
optimizer.step()
|
|
optimizer_torch.step()
|
|
|
|
# assert weights match (they don't!)
|
|
for k,v in model_torch.named_parameters():
|
|
if not CI: print("testing weight", k)
|
|
np.testing.assert_allclose(model_state_dict[k].numpy(), v.detach().numpy(), atol=1e-3, err_msg=f'weight mismatch {k}')
|
|
|
|
def get_mnist_data():
|
|
X_train, Y_train, X_test, Y_test = fetch_mnist()
|
|
BS = 32
|
|
num_classes = 10
|
|
X = Tensor(X_test[0:BS].astype(np.float32))
|
|
Y = np.zeros((BS, num_classes), np.float32)
|
|
Y[range(BS),Y_test[0:BS]] = -1.0*num_classes
|
|
return X, Tensor(Y)
|
|
|
|
class TestEnd2End(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.X, cls.Y = get_mnist_data()
|
|
|
|
def test_linear_mnist(self):
|
|
class LinTiny:
|
|
def __init__(self, has_batchnorm=False):
|
|
self.l1 = Linear(784, 128)
|
|
self.l2 = Linear(128, 10)
|
|
self.bn1 = BatchNorm2d(128) if has_batchnorm else lambda x: x
|
|
def __call__(self, x):
|
|
return self.l2(self.l1(x)).relu().log_softmax(-1)
|
|
class LinTorch(nn.Module):
|
|
def __init__(self, has_batchnorm=False):
|
|
super().__init__()
|
|
self.l1 = nn.Linear(784, 128)
|
|
self.l2 = nn.Linear(128, 10)
|
|
def forward(self, x):
|
|
return self.l2(self.l1(x)).relu().log_softmax(-1)
|
|
compare_tiny_torch(LinTiny(), LinTorch(), self.X, self.Y)
|
|
|
|
def test_bn_mnist(self):
|
|
class LinTiny:
|
|
def __init__(self):
|
|
self.l1 = Linear(784, 128)
|
|
self.l2 = Linear(128, 10)
|
|
self.bn1 = BatchNorm2d(128)
|
|
def __call__(self, x):
|
|
return self.l2(self.bn1(self.l1(x).reshape(x.shape[0], -1, 1, 1)).reshape(x.shape[0], -1).relu()).log_softmax(-1)
|
|
class LinTorch(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = nn.Linear(784, 128)
|
|
self.l2 = nn.Linear(128, 10)
|
|
self.bn1 = nn.BatchNorm2d(128)
|
|
def forward(self, x):
|
|
return self.l2(self.bn1(self.l1(x).reshape(x.shape[0], -1, 1, 1)).reshape(x.shape[0], -1).relu()).log_softmax(-1)
|
|
compare_tiny_torch(LinTiny(), LinTorch(), self.X, self.Y)
|
|
|
|
def test_bn_alone(self):
|
|
np.random.seed(1337)
|
|
X = Tensor(np.random.randn(32, 10, 1, 1).astype(np.float32))
|
|
Y = Tensor(np.random.randn(32, 10, 1, 1).astype(np.float32))
|
|
compare_tiny_torch(BatchNorm2d(10), nn.BatchNorm2d(10), X, Y)
|
|
|
|
def test_bn_linear(self):
|
|
BS, K = 2, 1
|
|
eps = 0
|
|
X = Tensor([1,0]).reshape(BS, K, 1, 1)
|
|
Y = Tensor([-1,0]).reshape(BS, K, 1, 1)
|
|
class LinTiny:
|
|
def __init__(self):
|
|
self.l1 = Conv2d(K, K, 1, bias=False)
|
|
self.bn1 = BatchNorm2d(K, affine=False, track_running_stats=False, eps=eps)
|
|
def __call__(self, x): return self.bn1(self.l1(x))
|
|
class LinTorch(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = nn.Conv2d(K, K, 1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(K, affine=False, track_running_stats=False, eps=eps)
|
|
def forward(self, x): return self.bn1(self.l1(x))
|
|
model_torch = LinTorch()
|
|
with torch.no_grad():
|
|
model_torch.l1.weight[:] = 1.
|
|
compare_tiny_torch(LinTiny(), model_torch, X, Y)
|
|
|
|
def test_conv_mnist(self):
|
|
class LinTiny:
|
|
def __init__(self, has_batchnorm=False):
|
|
self.c1 = Conv2d(1, 8, 3, stride=2)
|
|
self.c2 = Conv2d(8, 16, 3, stride=2)
|
|
self.l1 = Linear(16*6*6, 10)
|
|
if has_batchnorm:
|
|
self.bn1, self.bn2 = BatchNorm2d(8), BatchNorm2d(16)
|
|
else:
|
|
self.bn1, self.bn2 = lambda x: x, lambda x: x
|
|
def __call__(self, x):
|
|
return self.l1(self.bn2(self.c2(self.bn1(self.c1(x)).relu())).relu().reshape(x.shape[0], -1)).log_softmax(-1)
|
|
class LinTorch(nn.Module):
|
|
def __init__(self, has_batchnorm=False):
|
|
super().__init__()
|
|
self.c1 = nn.Conv2d(1, 8, 3, stride=2)
|
|
self.c2 = nn.Conv2d(8, 16, 3, stride=2)
|
|
self.l1 = nn.Linear(16*6*6, 10)
|
|
if has_batchnorm:
|
|
self.bn1, self.bn2 = nn.BatchNorm2d(8), nn.BatchNorm2d(16)
|
|
else:
|
|
self.bn1, self.bn2 = lambda x: x, lambda x: x
|
|
def forward(self, x):
|
|
return self.l1(self.bn2(self.c2(self.bn1(self.c1(x)).relu())).relu().reshape(x.shape[0], -1)).log_softmax(-1)
|
|
for has_batchnorm in [False, True]:
|
|
with self.subTest(has_batchnorm=has_batchnorm):
|
|
compare_tiny_torch(LinTiny(has_batchnorm), LinTorch(has_batchnorm), self.X.reshape((-1, 1, 28, 28)), self.Y)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|