Files
tinygrad/test/models/test_mnist.py
cheeetoo a0965ee198 CI < 5 minutes (#1252)
* models matrix

* fix typo and install gpu deps

* install llvm deps if needed

* fix

* testops with cuda

* remove pip cache since not work

* cuda env

* install cuda deps

* maybe it will work now

* i can't read

* all tests in matrix

* trim down more

* opencl stuff in matrix

* opencl pip cache

* test split

* change cuda test exclusion

* test

* fix cuda maybe

* add models

* add more n=auto

* third thing

* fix bug

* cache pip more

* change name

* update tests

* try again cause why not

* balance

* try again...

* try apt cache for cuda

* try on gpu:

* try cuda again

* update packages step

* replace libz-dev with zlib1g-dev

* only cache cuda

* why error

* fix gpuocelot bug

* apt cache err

* apt cache to slow?

* opt and image in single runner

* add a couple n=autos

* remove test matrix

* try cuda apt cache again

* libz-dev -> zlib1g-dev

* remove -s since not supported by xdist

* the cache takes too long and doesn't work

* combine webgpu and metal tests

* combine imagenet to c and cpu tests

* torch tests with linters

* torch back by itself

* small windows clang test with torch tests

* fix a goofy windows bug

* im dumb

* bro

* clang with linters

* fix pylint error

* linter not work on windows

* try with clang again

* clang and imagenet?

* install deps

* fix

* fix quote

* clang by itself (windows too slow)

* env vars for imagenet

* cache pip for metal and webgpu tests

* try torch with metal and webgpu

* doesn't work, too long

* remove -v

* try -n=logical

* don't use logical

* revert accidental thing

* remove some prints unless CI

* fix print unless CI

* ignore speed tests for slow tests

* clang windows in matrix (ubuntu being tested in imagenet->c test)

* try manual pip cache

* fix windows pip cache path

* all manual pip cache

* fix pip cache dir for macos

* print_ci function in helpers

* CI as variable, no print_ci

* missed one

* cuda tests with docker image

* remove setup-python action for cuda

* python->python3?

* remove -s -v

* try fix pip cache

* maybe fix

* try to fix pip cache

* is this the path?

* maybe cache pip

* try again

* create wheels dir

* ?

* cuda pip deps in dockerfile

* disable pip cache for clang

* image from ghcr instead of docker hub

* why is clang like this

* fast deps

* try use different caches

* remove the fast thing

* try with lighter image

* remove setup python for cuda

* small docker and cuda fast deps

* ignore a few more tests

* cool docker thing (maybe)

* oops

* quotes

* fix docker command

* fix bug

* ignore train efficientnet test

* remove dockerfile (docker stuff takes too long)

* remove docker stuff and normal cuda

* oops

* ignore the tests for cuda

* does this work

* ignore test_train on slow backends

* add space

* llvm ignore same tests as cuda

* nvm

* ignore lr scheduler tests

* get some stats

* fix ignore bug

* remove extra '

* remove and

* ignore test for llvm

* change ignored tests and durationon all backends

* fix

* and -> or

* ignore some more cuda tests

* finally?

* does this fix it

* remove durations=0

* add some more tests to llvm

* make last pytest more readable

* fix

* don't train efficientnet on cpu

* try w/out pip cache

* pip cache seems to be generally better

* pytest file markers

* try apt fast for cuda

* use quick install for apt-fast

* apt-fast not worth

* apt-get to apt

* fix typo

* suppress warnings

* register markers

* disable debug on fuzz tests

* change marker names

* apt update and apt install in one command

* update marker names in test.yml

* webgpu pytest marker
2023-07-23 13:00:56 -07:00

117 lines
3.8 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.state import get_parameters
from tinygrad.tensor import Tensor, Device
from tinygrad.nn import optim, BatchNorm2d
from extra.training import train, evaluate
from extra.datasets import fetch_mnist
import pytest
pytestmark = [pytest.mark.exclude_gpu, pytest.mark.exclude_clang]
# load the mnist dataset
X_train, Y_train, X_test, Y_test = fetch_mnist()
# create a model
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.scaled_uniform(784, 128)
self.l2 = Tensor.scaled_uniform(128, 10)
def parameters(self):
return get_parameters(self)
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).log_softmax()
# create a model with a conv layer
class TinyConvNet:
def __init__(self, has_batchnorm=False):
# https://keras.io/examples/vision/mnist_convnet/
conv = 3
#inter_chan, out_chan = 32, 64
inter_chan, out_chan = 8, 16 # for speed
self.c1 = Tensor.scaled_uniform(inter_chan,1,conv,conv)
self.c2 = Tensor.scaled_uniform(out_chan,inter_chan,conv,conv)
self.l1 = Tensor.scaled_uniform(out_chan*5*5, 10)
if has_batchnorm:
self.bn1 = BatchNorm2d(inter_chan)
self.bn2 = BatchNorm2d(out_chan)
else:
self.bn1, self.bn2 = lambda x: x, lambda x: x
def parameters(self):
return get_parameters(self)
def forward(self, x:Tensor):
x = x.reshape(shape=(-1, 1, 28, 28)) # hacks
x = self.bn1(x.conv2d(self.c1)).relu().max_pool2d()
x = self.bn2(x.conv2d(self.c2)).relu().max_pool2d()
x = x.reshape(shape=[x.shape[0], -1])
return x.dot(self.l1).log_softmax()
class TestMNIST(unittest.TestCase):
def test_sgd_onestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1)
for p in model.parameters(): p.realize()
def test_sgd_threestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=3)
def test_sgd_sixstep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=6, noloss=True)
def test_adam_onestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1)
for p in model.parameters(): p.realize()
def test_adam_threestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=3)
def test_conv_onestep(self):
np.random.seed(1337)
model = TinyConvNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1, noloss=True)
for p in model.parameters(): p.realize()
def test_conv(self):
np.random.seed(1337)
model = TinyConvNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, steps=100)
assert evaluate(model, X_test, Y_test) > 0.93 # torch gets 0.9415 sometimes
def test_conv_with_bn(self):
np.random.seed(1337)
model = TinyConvNet(has_batchnorm=True)
optimizer = optim.AdamW(model.parameters(), lr=0.003)
train(model, X_train, Y_train, optimizer, steps=200)
assert evaluate(model, X_test, Y_test) > 0.94
def test_sgd(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, steps=600)
assert evaluate(model, X_test, Y_test) > 0.94 # CPU gets 0.9494 sometimes
if __name__ == '__main__':
unittest.main()