Files
tinygrad/tinygrad/runtime/ops_python.py
geohotstan 9268a8b154 remove MULACC (#3459)
* init

* removed mulacc

* is uoptimize the problem?

* lol hax make work temporarily fix l8er

* revert extra/ changes

* clean up

* flaky metal tests?

* add back mulacc for metal

* revert last commit

* try skipping linearizer_failure tests

* skip flammit tests... cuz tests all work locally

* try narrow down exact linearizer failure test

* try 2

* try 4

* generated code is the exact same wtf why CI fails

* code for 15 and 17 are exact same with or without mulacc, this should pass

* try only 1 failure

* try garbage collecting lol...

* try del variables lol

* try gcing after del lol...

* is diskcache the problem???

* try disabling opts cache idk

* try remove hack

* try disable github metal cache...

* try CACHELEVEL=0 :D idk anymore

* try increase newCommandQueueWithMaxCommandBufferCount_, im almost out of ideas...

* revert

* actually not a HACK

* oops
2024-02-29 07:40:40 -05:00

217 lines
11 KiB
Python

# a python uops emulator
# works to test the tensor cores, and all the uops in general
# this is the (living) definition of uops
from typing import Tuple, List, Optional, Any, Dict
import pickle, base64, itertools, time, math, struct
from tinygrad.dtype import DType, dtypes, ImageDType
from tinygrad.helpers import all_same, getenv, flatten
from tinygrad.device import Compiled, Allocator, Compiler
from tinygrad.codegen.uops import UOp, UOps
from tinygrad.ops import UnaryOps, BinaryOps, TernaryOps
from tinygrad.codegen.kernel import LinearizerOptions
def exec_alu(arg, dtype, p):
# TODO: make this complete and correctly honor the dtypes
# TODO: use this for constant folding
if arg == TernaryOps.WHERE: return p[1] if p[0] else p[2]
if arg == UnaryOps.LOG2: return math.log2(p[0]) if p[0] > 0 else -math.inf if p[0] == 0 else math.nan
if arg == UnaryOps.EXP2:
try: return math.exp(p[0]*math.log(2))
except OverflowError: return math.inf
if arg == UnaryOps.SQRT: return math.sqrt(p[0]) if p[0] >= 0 else math.nan
if arg == UnaryOps.SIN: return math.sin(p[0])
if arg == UnaryOps.NEG: return -p[0]
if arg == BinaryOps.MUL: return p[0]*p[1]
if arg == BinaryOps.ADD: return p[0]+p[1]
if arg == BinaryOps.SUB: return p[0]-p[1]
if arg == BinaryOps.XOR: return p[0]^p[1]
if arg == BinaryOps.MAX: return max(p[0], p[1])
if arg == BinaryOps.CMPEQ: return p[0] == p[1]
if arg == BinaryOps.CMPLT: return p[0] < p[1]
if arg == BinaryOps.DIV: return p[0]//p[1] if dtypes.is_int(dtype) else (p[0]/p[1] if p[1] != 0 else math.nan)
if arg == BinaryOps.MOD: return p[0]%p[1]
raise NotImplementedError(f"no support for {arg}")
def _load(m, i):
if i<0 or i>=len(m): raise IndexError(f"load out of bounds, size is {len(m)} and access is {i}")
return m[i]
def load(inp, j=0):
if len(inp) == 4:
return [_load(m, x+j) if gate else default for m,x,gate,default in zip(*inp)]
else:
return [_load(m, x+j) for m,x in zip(inp[0], inp[1])]
def _store(m, i, v):
if i<0 or i>=len(m): raise IndexError(f"store out of bounds, size is {len(m)}, access is {i}, value is {v}")
m[i] = v
class PythonProgram:
def __init__(self, name:str, lib:bytes):
self.uops: List[Tuple[UOps, Optional[DType], List[int], Any]] = pickle.loads(lib)
def __call__(self, *bufs, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
st = time.perf_counter()
warp = list(itertools.product(*[range(x) for x in local_size[::-1]]))
warp_size = len(warp)
for idxs in itertools.product(*[range(x) for x in global_size[::-1]]):
ul: Dict[int, Any] = {}
dl: Dict[int, DType] = {}
pbufs: List[memoryview] = list(bufs)
i = 0
loop_ends: Dict[int, int] = {}
while i < len(self.uops):
uop, dtype, idp, arg = self.uops[i]
void_ops = {UOps.STORE, UOps.ENDLOOP, UOps.BARRIER, UOps.IF, UOps.ENDIF}
inp = [ul[v] for v in idp if self.uops[v][0] not in void_ops]
dtp = [dl[v] for v in idp if self.uops[v][0] not in void_ops]
if getenv("TRACE"): print(i, uop, dtype, arg, inp, dtp)
if uop is UOps.STORE:
assert len(inp) <= 3, "gated stores not supported yet"
if isinstance(dtp[0], ImageDType):
# image store
assert dtp[2].count == 4
for j,val in enumerate(inp[2]):
for m,ox,oy,v in zip(inp[0], inp[1][0], inp[1][1], val):
assert ox >= 0 and ox < dtp[0].shape[1] and oy >= 0 and oy < dtp[0].shape[0]
_store(m, ox*4 + oy*dtp[0].shape[1]*4 + j, v)
elif dtp[2].count > 1:
for j,val in enumerate(inp[2]):
for m,o,v in zip(inp[0], inp[1], val): _store(m, o+j, v)
else:
for m,o,v in zip(*inp): _store(m, o, v)
i += 1
continue
elif uop is UOps.ENDLOOP:
loop_ends[idp[0]] = i
i = idp[0]
continue
elif uop in (UOps.BARRIER, UOps.IF, UOps.ENDIF):
# in the python emulator, the warp is always in sync
i += 1
continue
assert dtype is not None, f"{uop} is missing a dtype"
dl[i] = dtype
if uop is UOps.DEFINE_GLOBAL:
assert dtype.fmt is not None
ul[i] = [pbufs.pop(0).cast(dtype.fmt)] * warp_size
elif uop is UOps.DEFINE_LOCAL:
assert dtype.fmt is not None
lbuf = memoryview(bytearray(arg[1]*dtype.itemsize))
ul[i] = [lbuf.cast(dtype.fmt)] * warp_size
elif uop is UOps.SPECIAL:
if arg[1][0] == 'g':
ul[i] = [idxs[2-arg[0]]] * warp_size
elif arg[1][0] == 'l':
ul[i] = [x[2-arg[0]] for x in warp]
elif uop is UOps.CONST:
casted_arg = int(arg) if dtypes.is_int(dtype) else float(arg)
if dtype.count > 1:
ul[i] = [[casted_arg] * warp_size for _ in range(dtype.count)]
else:
ul[i] = [casted_arg] * warp_size
elif uop is UOps.DEFINE_ACC:
if dtype.count > 1:
ul[i] = [[arg] * warp_size for _ in range(dtype.count)]
else:
ul[i] = [arg] * warp_size
elif uop is UOps.LOOP:
if i not in ul:
ul[i] = [inp[0][0]] * warp_size
else:
for j in range(len(ul[i])):
ul[i][j] += 1
if ul[i][0] == inp[1][0]:
del ul[i]
i = loop_ends[i] + 1
continue
elif uop is UOps.CAST:
if dtype.count > 1:
ul[i] = inp
else:
assert dtp[0].fmt and dtype.fmt
pack_format, unpack_format = str(warp_size) + dtp[0].fmt, str(warp_size) + dtype.fmt
if arg[1]:
ul[i] = list(struct.unpack(unpack_format, struct.pack(pack_format, *inp[0])))
else:
casted = [float(x) if dtypes.is_float(dtype) else int(x) if dtypes.is_int(dtype) else x for x in inp[0]]
overflow_adjust = 2**(dtype.itemsize*8 - 1) if (dtypes.is_int(dtype) and not dtypes.is_unsigned(dtype)) else 0
overflow_fixed = [((x + overflow_adjust) % 2**(dtype.itemsize*8) - overflow_adjust) if dtypes.is_int(dtype) else x for x in casted]
ul[i] = list(struct.unpack(unpack_format, struct.pack(unpack_format, *overflow_fixed)))
elif uop is UOps.LOAD:
if isinstance(dtp[0], ImageDType):
assert dtype.count == 4
ul[i] = []
for j in range(dtype.count):
ret = []
for m,ox,oy in zip(inp[0], inp[1][0], inp[1][1]):
if ox < 0 or ox >= dtp[0].shape[1] or oy < 0 or oy >= dtp[0].shape[0]: ret.append(0)
else: ret.append(_load(m, ox*4 + oy*dtp[0].shape[1]*4 + j))
ul[i].append(ret)
elif dtype.count > 1:
ul[i] = [load([inp[i][j] if dtp[i].count > 1 else inp[i] for i in range(len(inp))], j) for j in range(dtype.count)]
else:
ul[i] = load(inp)
elif uop is UOps.PHI:
for j in range(len(inp[0])):
inp[0][j] = inp[1][j]
ul[i] = inp[0]
elif uop is UOps.GEP:
ul[i] = inp[0][arg]
elif uop is UOps.WMMA:
# here are the models for the WMMA instruction on the different hardware
def wmma_helper(WARP_THREADS, K, NUM_A, NUM_B, NUM_C, a_elem, b_elem, c_map):
assert len(inp[0]) == NUM_A, f"A must have {NUM_A} elements per thread"
assert len(inp[1]) == NUM_B, f"B must have {NUM_B} elements per thread"
assert len(inp[2]) == NUM_C, f"C must have {NUM_C} elements per thread"
assert len(flatten(inp[0])) == NUM_A * warp_size, f"WMMA must have {NUM_A * warp_size} total elements for A in WMMA"
assert len(flatten(inp[1])) == NUM_B * warp_size, f"WMMA must have {NUM_B * warp_size} total elements for B in WMMA"
assert len(flatten(inp[2])) == NUM_C * warp_size, f"WMMA must have {NUM_C * warp_size} total elements for C in WMMA"
assert warp_size > 0 and warp_size % WARP_THREADS == 0, f"must have multiples of {WARP_THREADS} warp threads"
out = [inp[2][elem_idx][:] for elem_idx in range(NUM_C)]
for goff in range(0, warp_size, WARP_THREADS):
for lane_id in range(WARP_THREADS):
for elem_idx in range(NUM_C): # calculate new muls and add to acc
(c_i, c_j) = c_map(lane_id, elem_idx)
out[elem_idx][goff+lane_id] += sum(a_elem(inp[0], _k, c_j, goff) * b_elem(inp[1], c_i, _k, goff) for _k in range(K))
return out
if arg.startswith('__metal_wmma'):
def a_b_elem(x, i, j, goff): # A (2 elements on 32 threads): row major
return x[(i%2)][goff+(i//2)%2+(j%4)*2+(i//4)*8+(j//4)*16]
def c_map(lane, elem): # (i, j), C, D (2 elements on 32 threads): row major same as A/B
return (elem + ((lane%2)*2) + ((lane//8)%2)*4, ((lane//2)%4) + (lane//16)*4)
ul[i] = wmma_helper(32, 8, 2, 2, 2, a_b_elem, a_b_elem, c_map)
elif arg == '__builtin_amdgcn_wmma_f32_16x16x16_f16_w32' or arg == '__hip_wmma_f16_f16':
def a_elem(x, i, j, goff): # A (16 elements on 32 threads): col major, lane 16-32 == lane 0-15
assert x[i][goff+j] == x[i][goff+j+16], "warp elements not duplicated properly across lanes"
return x[i][goff+j]
def b_elem(x, i, j, goff): # B (16 elements on 32 threads): row major, lane 16-32 == lane 0-15
return a_elem(x, j, i, goff)
def c_map(lane, elem): return (lane%16, lane//16+elem*2) # (i, j), C, D (8 elements on 32 threads): row major
ul[i] = wmma_helper(32, 16, 16, 16, 8, a_elem, b_elem, c_map)
else:
raise Exception(f"unimplemented tensor core {arg}")
elif uop is UOps.ALU:
assert all_same([len(x) for x in inp]), f"{[len(x) for x in inp]} doesn't match on {arg}"
assert all_same([dtype] + dtp) or arg in {BinaryOps.CMPEQ, BinaryOps.CMPLT, TernaryOps.WHERE}, f"dtype mismatch on {arg}"
ul[i] = [exec_alu(arg, dtype, p) for p in zip(*inp)]
assert i in ul, (uop, dtype, idp, arg)
i += 1
return time.perf_counter() - st
class PythonCompiler(Compiler):
linearizer_opts = LinearizerOptions("METAL", has_tensor_cores=True) if getenv("EMULATE_METAL") else \
(LinearizerOptions("HIP", has_tensor_cores=True) if getenv("EMULATE_HIP") else LinearizerOptions())
def render(self, name:str, uops:List[UOp]) -> str:
lops = [(u.uop, u.dtype, [uops.index(v) for v in u.vin], u.arg) for u in uops]
return base64.b64encode(pickle.dumps(lops)).decode()
def compile(self, src:str) -> bytes: return base64.b64decode(src)
class PythonAllocator(Allocator):
def _alloc(self, size): return memoryview(bytearray(size))
def copyin(self, dest, src:memoryview): dest[:] = src
def copyout(self, dest:memoryview, src): dest[:] = src
class PythonDevice(Compiled):
def __init__(self, device:str):
super().__init__(device, PythonAllocator(), PythonCompiler(), PythonProgram)