Files
tinygrad/test/test_tensor.py
2020-10-22 01:28:52 +02:00

97 lines
3.3 KiB
Python

import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor, Conv2D
from tinygrad.gradcheck import numerical_jacobian, gradcheck
x_init = np.random.randn(1,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init)
W = Tensor(W_init)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.logsoftmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.data, x.grad, W.grad
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_gradcheck(self):
class TinyModel:
def __init__(self, weights_init):
self.l1 = Tensor(weights_init)
def forward(self, x):
return x.dot(self.l1).relu().logsoftmax()
class TorchModel(torch.nn.Module):
def __init__(self, weights_init):
super(TorchModel, self).__init__()
self.l1 = torch.nn.Linear(*weights_init.shape, bias = False)
self.l1.weight = torch.nn.Parameter(torch.tensor(weights_init.T, requires_grad = True))
def forward(self, x):
return torch.nn.functional.log_softmax(self.l1(x).relu(), dim=1)
layer_weights = np.random.RandomState(1337).random((10, 5))
input_data = np.random.RandomState(7331).random((1, 10)) - 0.5
torch_input = torch.tensor(input_data, requires_grad = True)
torch_model = TorchModel(layer_weights)
torch_out = torch_model(torch_input)
# autograd.grad computes the _sum_ of gradients of given tensors
J_sum = torch.autograd.grad(list(torch_out[0]), torch_input)[0].squeeze().numpy()
tiny_model = TinyModel(layer_weights)
tiny_input = Tensor(input_data)
tiny_out = tiny_model.forward(tiny_input)
NJ = numerical_jacobian(tiny_model, tiny_input)
NJ_sum = NJ.sum(axis = -1)
# checking the numerical approx. of J is close to the one provided autograd
np.testing.assert_allclose(J_sum, NJ_sum, atol = 1e-5)
# test gradcheck
gradcheck_test, _, _ = gradcheck(tiny_model, tiny_input)
self.assertTrue(gradcheck_test)
# coarse approx. since a "big" eps and the non-linearities of the model
gradcheck_test, j, nj = gradcheck(tiny_model, tiny_input, eps = 0.1)
self.assertFalse(gradcheck_test)
def test_conv2d(self):
x = torch.randn((5,2,10,7), requires_grad=True)
w = torch.randn((4,2,3,3), requires_grad=True)
xt = Tensor(x.detach().numpy())
wt = Tensor(w.detach().numpy())
out = torch.nn.functional.conv2d(x,w)
ret = Conv2D.apply(Conv2D, xt, wt)
np.testing.assert_allclose(ret.data, out.detach().numpy(), atol=1e-5)
out.mean().backward()
ret.mean().backward()
np.testing.assert_allclose(w.grad, wt.grad, atol=1e-5)
np.testing.assert_allclose(x.grad, xt.grad, atol=1e-5)
if __name__ == '__main__':
unittest.main()