mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-22 21:38:10 -05:00
* models matrix * fix typo and install gpu deps * install llvm deps if needed * fix * testops with cuda * remove pip cache since not work * cuda env * install cuda deps * maybe it will work now * i can't read * all tests in matrix * trim down more * opencl stuff in matrix * opencl pip cache * test split * change cuda test exclusion * test * fix cuda maybe * add models * add more n=auto * third thing * fix bug * cache pip more * change name * update tests * try again cause why not * balance * try again... * try apt cache for cuda * try on gpu: * try cuda again * update packages step * replace libz-dev with zlib1g-dev * only cache cuda * why error * fix gpuocelot bug * apt cache err * apt cache to slow? * opt and image in single runner * add a couple n=autos * remove test matrix * try cuda apt cache again * libz-dev -> zlib1g-dev * remove -s since not supported by xdist * the cache takes too long and doesn't work * combine webgpu and metal tests * combine imagenet to c and cpu tests * torch tests with linters * torch back by itself * small windows clang test with torch tests * fix a goofy windows bug * im dumb * bro * clang with linters * fix pylint error * linter not work on windows * try with clang again * clang and imagenet? * install deps * fix * fix quote * clang by itself (windows too slow) * env vars for imagenet * cache pip for metal and webgpu tests * try torch with metal and webgpu * doesn't work, too long * remove -v * try -n=logical * don't use logical * revert accidental thing * remove some prints unless CI * fix print unless CI * ignore speed tests for slow tests * clang windows in matrix (ubuntu being tested in imagenet->c test) * try manual pip cache * fix windows pip cache path * all manual pip cache * fix pip cache dir for macos * print_ci function in helpers * CI as variable, no print_ci * missed one * cuda tests with docker image * remove setup-python action for cuda * python->python3? * remove -s -v * try fix pip cache * maybe fix * try to fix pip cache * is this the path? * maybe cache pip * try again * create wheels dir * ? * cuda pip deps in dockerfile * disable pip cache for clang * image from ghcr instead of docker hub * why is clang like this * fast deps * try use different caches * remove the fast thing * try with lighter image * remove setup python for cuda * small docker and cuda fast deps * ignore a few more tests * cool docker thing (maybe) * oops * quotes * fix docker command * fix bug * ignore train efficientnet test * remove dockerfile (docker stuff takes too long) * remove docker stuff and normal cuda * oops * ignore the tests for cuda * does this work * ignore test_train on slow backends * add space * llvm ignore same tests as cuda * nvm * ignore lr scheduler tests * get some stats * fix ignore bug * remove extra ' * remove and * ignore test for llvm * change ignored tests and durationon all backends * fix * and -> or * ignore some more cuda tests * finally? * does this fix it * remove durations=0 * add some more tests to llvm * make last pytest more readable * fix * don't train efficientnet on cpu * try w/out pip cache * pip cache seems to be generally better * pytest file markers * try apt fast for cuda * use quick install for apt-fast * apt-fast not worth * apt-get to apt * fix typo * suppress warnings * register markers * disable debug on fuzz tests * change marker names * apt update and apt install in one command * update marker names in test.yml * webgpu pytest marker
125 lines
7.1 KiB
Python
125 lines
7.1 KiB
Python
import unittest
|
|
import numpy as np
|
|
from tinygrad.helpers import getenv, DType, DEBUG, CI
|
|
from tinygrad.lazy import Device
|
|
from tinygrad.tensor import Tensor, dtypes
|
|
from typing import List, Optional
|
|
from extra.utils import OSX, temp
|
|
import copy
|
|
|
|
def _test_to_np(a:Tensor, np_dtype, target):
|
|
if DEBUG >= 2: print(a)
|
|
na = a.numpy()
|
|
if DEBUG >= 2: print(na, na.dtype, a.lazydata.realized)
|
|
try:
|
|
assert na.dtype == np_dtype
|
|
np.testing.assert_allclose(na, target)
|
|
except AssertionError as e:
|
|
raise AssertionError(f"\ntensor {a.numpy()} does not match target {target} with np_dtype {np_dtype}") from e
|
|
|
|
def _assert_eq(tensor:Tensor, target_dtype:DType, target):
|
|
if DEBUG >= 2: print(tensor.numpy())
|
|
try:
|
|
assert tensor.dtype == target_dtype
|
|
np.testing.assert_allclose(tensor.numpy(), target)
|
|
except AssertionError as e:
|
|
raise AssertionError(f"\ntensor {tensor.numpy()} dtype {tensor.dtype} does not match target {target} with dtype {target_dtype}") from e
|
|
|
|
def _test_op(fxn, target_dtype:DType, target): _assert_eq(fxn(), target_dtype, target)
|
|
def _test_cast(a:Tensor, target_dtype:DType, target): _test_op(lambda: a.cast(target_dtype), target_dtype, target)
|
|
|
|
# tests no-op casts from source_dtype to target_dtypes
|
|
def _test_casts_from(tensor_contents:List, source_dtype:DType, target_dtypes:List[DType], target_contents:Optional[List]=None):
|
|
if target_contents is None: target_contents = copy.deepcopy(tensor_contents)
|
|
list(map(
|
|
lambda t_dtype: _test_cast(Tensor(tensor_contents, dtype=source_dtype), t_dtype, target_contents),
|
|
target_dtypes
|
|
))
|
|
# tests no-op casts from source_dtypes to target_dtype
|
|
def _test_casts_to(tensor_contents:List, source_dtypes:List[DType], target_dtype:DType, target_contents:Optional[List]=None):
|
|
if target_contents is None: target_contents = copy.deepcopy(tensor_contents)
|
|
list(map(
|
|
lambda s_dtype: _test_cast(Tensor(tensor_contents, dtype=s_dtype), target_dtype, target_contents),
|
|
source_dtypes
|
|
))
|
|
|
|
def _test_ops(a_dtype:DType, b_dtype:DType, target_dtype:DType):
|
|
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)+Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [2,4,6,8])
|
|
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)*Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [1,4,9,16])
|
|
_assert_eq(Tensor([[1,2],[3,4]], dtype=a_dtype)@Tensor.eye(2, dtype=b_dtype), target_dtype, [[1,2],[3,4]])
|
|
|
|
class TestBFloat16DType(unittest.TestCase):
|
|
def test_bf16_to_float(self):
|
|
with self.assertRaises(AssertionError):
|
|
_test_cast(Tensor([100000], dtype=dtypes.bfloat16), dtypes.float32, [100000])
|
|
|
|
def test_float_to_bf16(self):
|
|
with self.assertRaises(AssertionError):
|
|
_test_cast(Tensor([100000], dtype=dtypes.float32), dtypes.bfloat16, [100000])
|
|
|
|
# torch.tensor([10000, -1, -1000, -10000, 20]).type(torch.bfloat16)
|
|
|
|
@unittest.skipIf(Device.DEFAULT not in ["LLVM"], "bf16 only on LLVM")
|
|
def test_bf16(self):
|
|
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.bfloat16)
|
|
t.realize()
|
|
back = t.cast(dtypes.float32)
|
|
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
|
|
|
|
@unittest.skipIf(Device.DEFAULT not in ["LLVM"], "bf16 only on LLVM")
|
|
def test_bf16_disk_write_read(self):
|
|
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.float32)
|
|
t.to(f"disk:{temp('f32')}").realize()
|
|
|
|
# hack to "cast" f32 -> bf16
|
|
dat = open(temp('f32'), "rb").read()
|
|
adat = b''.join([dat[i+2:i+4] for i in range(0, len(dat), 4)])
|
|
with open(temp('bf16'), "wb") as f: f.write(adat)
|
|
|
|
t = Tensor.empty(5, dtype=dtypes.bfloat16, device=f"disk:{temp('bf16')}").llvm().realize()
|
|
back = t.cast(dtypes.float32)
|
|
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
|
|
|
|
# for GPU, cl_khr_fp16 isn't supported (except now we don't need it!)
|
|
# for LLVM, it segfaults because it can't link to the casting function
|
|
@unittest.skipIf((getenv("CI", "") != "" and Device.DEFAULT in ["LLVM"]) or Device.DEFAULT == "WEBGPU", "float16 broken in some CI backends")
|
|
class TestHalfDtype(unittest.TestCase):
|
|
def test_float16_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.float16), np.float16, [1,2,3,4])
|
|
def test_casts_to_half(self): _test_casts_to([1,2,3,4], source_dtypes=[dtypes.float32, dtypes.int8, dtypes.uint8], target_dtype=dtypes.float16)
|
|
def test_casts_from_half(self): _test_casts_from([1,2,3,4], source_dtype=dtypes.float16, target_dtypes=[dtypes.int8, dtypes.uint8, dtypes.float32, dtypes.int32, dtypes.int64])
|
|
def test_half_upcast_ops(self): _test_ops(a_dtype=dtypes.float16, b_dtype=dtypes.float32, target_dtype=dtypes.float32)
|
|
def test_upcast_to_half_ops(self): _test_ops(a_dtype=dtypes.int8, b_dtype=dtypes.float16, target_dtype=dtypes.float16)
|
|
|
|
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "webgpu does not support int8")
|
|
class TestInt8Dtype(unittest.TestCase):
|
|
def test_int8_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.int8), np.int8, [1,2,3,4])
|
|
def test_uint8_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.uint8), np.uint8, [1,2,3,4])
|
|
def test_int64_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.int64), np.int64, [1,2,3,4])
|
|
|
|
def test_casts_to_int8(self): _test_casts_from([1,2,3,4], source_dtype=dtypes.float32, target_dtypes=[dtypes.int8, dtypes.uint8, dtypes.int32, dtypes.int64])
|
|
def test_casts_from_int8(self): _test_casts_from([1,2,3,4], source_dtype=dtypes.int8, target_dtypes=[dtypes.float32, dtypes.uint8, dtypes.int32, dtypes.int64])
|
|
def test_casts_from_uint8(self): _test_casts_from([1,2,3,4], source_dtype=dtypes.uint8, target_dtypes=[dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64])
|
|
|
|
def test_int8_ops(self): _test_ops(a_dtype=dtypes.int8, b_dtype=dtypes.int8, target_dtype=dtypes.int8)
|
|
def test_int64_ops(self): _test_ops(a_dtype=dtypes.int64, b_dtype=dtypes.int64, target_dtype=dtypes.int64)
|
|
def test_int8_upcast_float(self): _test_ops(a_dtype=dtypes.int8, b_dtype=dtypes.float32, target_dtype=dtypes.float32)
|
|
def test_int8_upcast_int64(self): _test_ops(a_dtype=dtypes.int8, b_dtype=dtypes.int64, target_dtype=dtypes.int64)
|
|
|
|
@unittest.skipIf(getenv("CUDA",0)==1, "cuda saturation works differently")
|
|
def test_int8_to_uint8_negative(self): _test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint8), dtypes.uint8, [255, 254, 253, 252])
|
|
|
|
def test_uint8_to_int8_overflow(self): _test_op(lambda: Tensor([255, 254, 253, 252], dtype=dtypes.uint8).cast(dtypes.int8), dtypes.int8, [-1, -2, -3, -4])
|
|
|
|
class TestInt32Dtype(unittest.TestCase):
|
|
def test_int32_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.int32), np.int32, [1,2,3,4])
|
|
|
|
def test_casts_to_int32(self): _test_casts_to([1,2,3,4], source_dtypes=[dtypes.float32, dtypes.int64], target_dtype=dtypes.int32)
|
|
def test_casts_from_int32(self): _test_casts_from([1,2,3,4], source_dtype=dtypes.int32, target_dtypes=[dtypes.float32, dtypes.int64])
|
|
|
|
def test_int32_ops(self): _test_ops(a_dtype=dtypes.int32, b_dtype=dtypes.int32, target_dtype=dtypes.int32)
|
|
def test_int32_upcast_float32(self): _test_ops(a_dtype=dtypes.int32, b_dtype=dtypes.float32, target_dtype=dtypes.float32)
|
|
def test_int32_upcast_int64(self): _test_ops(a_dtype=dtypes.int32, b_dtype=dtypes.int64, target_dtype=dtypes.int64)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|