Files
tinygrad/test/test_specific_conv.py
cheeetoo a0965ee198 CI < 5 minutes (#1252)
* models matrix

* fix typo and install gpu deps

* install llvm deps if needed

* fix

* testops with cuda

* remove pip cache since not work

* cuda env

* install cuda deps

* maybe it will work now

* i can't read

* all tests in matrix

* trim down more

* opencl stuff in matrix

* opencl pip cache

* test split

* change cuda test exclusion

* test

* fix cuda maybe

* add models

* add more n=auto

* third thing

* fix bug

* cache pip more

* change name

* update tests

* try again cause why not

* balance

* try again...

* try apt cache for cuda

* try on gpu:

* try cuda again

* update packages step

* replace libz-dev with zlib1g-dev

* only cache cuda

* why error

* fix gpuocelot bug

* apt cache err

* apt cache to slow?

* opt and image in single runner

* add a couple n=autos

* remove test matrix

* try cuda apt cache again

* libz-dev -> zlib1g-dev

* remove -s since not supported by xdist

* the cache takes too long and doesn't work

* combine webgpu and metal tests

* combine imagenet to c and cpu tests

* torch tests with linters

* torch back by itself

* small windows clang test with torch tests

* fix a goofy windows bug

* im dumb

* bro

* clang with linters

* fix pylint error

* linter not work on windows

* try with clang again

* clang and imagenet?

* install deps

* fix

* fix quote

* clang by itself (windows too slow)

* env vars for imagenet

* cache pip for metal and webgpu tests

* try torch with metal and webgpu

* doesn't work, too long

* remove -v

* try -n=logical

* don't use logical

* revert accidental thing

* remove some prints unless CI

* fix print unless CI

* ignore speed tests for slow tests

* clang windows in matrix (ubuntu being tested in imagenet->c test)

* try manual pip cache

* fix windows pip cache path

* all manual pip cache

* fix pip cache dir for macos

* print_ci function in helpers

* CI as variable, no print_ci

* missed one

* cuda tests with docker image

* remove setup-python action for cuda

* python->python3?

* remove -s -v

* try fix pip cache

* maybe fix

* try to fix pip cache

* is this the path?

* maybe cache pip

* try again

* create wheels dir

* ?

* cuda pip deps in dockerfile

* disable pip cache for clang

* image from ghcr instead of docker hub

* why is clang like this

* fast deps

* try use different caches

* remove the fast thing

* try with lighter image

* remove setup python for cuda

* small docker and cuda fast deps

* ignore a few more tests

* cool docker thing (maybe)

* oops

* quotes

* fix docker command

* fix bug

* ignore train efficientnet test

* remove dockerfile (docker stuff takes too long)

* remove docker stuff and normal cuda

* oops

* ignore the tests for cuda

* does this work

* ignore test_train on slow backends

* add space

* llvm ignore same tests as cuda

* nvm

* ignore lr scheduler tests

* get some stats

* fix ignore bug

* remove extra '

* remove and

* ignore test for llvm

* change ignored tests and durationon all backends

* fix

* and -> or

* ignore some more cuda tests

* finally?

* does this fix it

* remove durations=0

* add some more tests to llvm

* make last pytest more readable

* fix

* don't train efficientnet on cpu

* try w/out pip cache

* pip cache seems to be generally better

* pytest file markers

* try apt fast for cuda

* use quick install for apt-fast

* apt-fast not worth

* apt-get to apt

* fix typo

* suppress warnings

* register markers

* disable debug on fuzz tests

* change marker names

* apt update and apt install in one command

* update marker names in test.yml

* webgpu pytest marker
2023-07-23 13:00:56 -07:00

57 lines
2.3 KiB
Python

import unittest
from tinygrad.tensor import Tensor
from tinygrad.helpers import dtypes
from tinygrad.lazy import Device
import pytest
# similar to test/external/external_test_gpu_ast.py, but universal
pytestmark = pytest.mark.exclude_cuda
class TestSpecific(unittest.TestCase):
# from openpilot
# 1x1 6 <- 24
def test_1x1_6_24(self):
x = Tensor.randn(1, 24*4, 32, 64)
w = Tensor.randn(6*4, 24*4, 1, 1)
x.conv2d(w).permute(0,2,3,1).reshape(32, 384, 4).contiguous().realize()
def test_vec_mul(self):
# this forces it to be an image...
x = Tensor.ones(1, 512, 4).contiguous().reshape(1, 2048)
w = Tensor.randn(2048, 512)
(x @ w).reshape(1, 128, 4).contiguous().realize()
@unittest.skipIf(Device.DEFAULT in ["LLVM", "WEBGPU"], "Broken on LLVM and webgpu")
def test_big_vec_mul(self):
# from LLaMA
# 0 buffer<4096, dtypes.float> [View((1024, 1, 1, 4), (4, 0, 0, 1), 0, None)]
# 1 buffer<4096, dtypes.float> [View((1024, 1024, 4, 4), (0, 4, 1, 0), 0, None)]
# 2 buffer<16777216, dtypes.half> [View((1024, 1024, 4, 4), (16384, 4, 1, 4096), 0, None)]
x = Tensor.randn(4096).realize()
w = Tensor.randn(4096, 4096, device='cpu').cast(dtypes.float16).to(Device.DEFAULT).realize()
(x @ w.T).realize()
# from https://dl.acm.org/doi/pdf/10.1145/3495243.3517020
# ~260 GFLOPS on Adreno 640, should be 260*(720/890)*(596/710) = 176.5 on downclocked 630
# we get 170
def test_1x1_28_28(self):
x = Tensor.randn(1, 256, 28, 28)
w = Tensor.randn(256, 256, 1, 1)
x.conv2d(w).permute(0,2,3,1).reshape(28, 28*256//4, 4).contiguous().realize()
# 132 GFLOPS on Adreno 640, should be 132*(720/890)*(596/710) = 90 on downclocked 630
# gets 54 with broken opt, 74 without opt, and 146 if we pad and opt 3!
def test_3x3_28_28_stride_2(self):
x = Tensor.randn(1, 288, 36, 36)
w = Tensor.randn(384, 288, 3, 3)
x.conv2d(w, stride=2).permute(0,2,3,1).reshape(17, 17*384//4, 4).contiguous().realize()
def test_3x3_28_28_stride_2_padded(self):
x = Tensor.randn(1, 288, 36, 36)
w = Tensor.randn(384, 288, 3, 3)
x.conv2d(w, stride=2, padding=1).permute(0,2,3,1).reshape(18, 18*384//4, 4).contiguous().realize()
if __name__ == '__main__':
unittest.main()