mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
427 lines
19 KiB
Python
427 lines
19 KiB
Python
import math
|
|
|
|
from tinygrad import Tensor, dtypes
|
|
from tinygrad.uop.ops import UOp
|
|
|
|
from extra.thunder.tiny.tk import WARP_THREADS
|
|
from extra.thunder.tiny.tk.kernel import Kernel
|
|
from extra.thunder.tiny.tk.tiles import GL, TileLayout
|
|
|
|
NUM_WORKERS = 1
|
|
Q_BLOCK_SIZE = 16
|
|
KV_BLOCK_SIZE = 16
|
|
|
|
def flash_attention(xq, xk, xv, attn_mask:Tensor|None=None, is_causal:bool=False):
|
|
if len(xq.shape) == 3: xq, xk, xv = xq.unsqueeze(0), xk.unsqueeze(0), xv.unsqueeze(0)
|
|
|
|
odtype = xq.dtype
|
|
xq, xk, xv = xq.transpose(1, 2).cast(dtypes.bfloat16), xk.transpose(1, 2).cast(dtypes.bfloat16), xv.transpose(1, 2).cast(dtypes.bfloat16)
|
|
|
|
_, N_, _, D_ = xq.shape
|
|
block_size = max(Q_BLOCK_SIZE, KV_BLOCK_SIZE)
|
|
assert D_ % block_size == 0, f"embedding dimension must be multiple of block size, got {D_=} {block_size=}"
|
|
|
|
# pad to multiple of block size
|
|
xq = xq.pad(((0, 0), (0, (block_size - (xq.shape[1] % block_size)) % block_size), (0, 0), (0, 0)))
|
|
xk = xk.pad(((0, 0), (0, (block_size - (xk.shape[1] % block_size)) % block_size), (0, 0), (0, 0)))
|
|
xv = xv.pad(((0, 0), (0, (block_size - (xv.shape[1] % block_size)) % block_size), (0, 0), (0, 0)))
|
|
|
|
B, N, H, D = xq.shape
|
|
H_KV = xk.shape[2]
|
|
GROUP_SIZE = H // H_KV
|
|
print(f"Flash Attention {B=} {N=} {H=} {D=} {H_KV=} {GROUP_SIZE=}")
|
|
|
|
def custom_forward(ou:UOp, l_vecu:UOp, qu:UOp, ku:UOp, vu:UOp, masku:UOp) -> UOp:
|
|
with Kernel("fa_custom_forward", (H, N // (Q_BLOCK_SIZE*NUM_WORKERS), B), NUM_WORKERS * WARP_THREADS) as ker:
|
|
warp = ker.warp
|
|
|
|
o, q, k, v, mask, l_vec = GL(ou, ker), GL(qu, ker), GL(ku, ker), GL(vu, ker), GL(masku, ker), GL(l_vecu, ker)
|
|
|
|
head = ker.blockIdx_x
|
|
head_kv = head // GROUP_SIZE
|
|
batch = ker.blockIdx_z
|
|
q_seq = ker.blockIdx_y * NUM_WORKERS + ker.warpid
|
|
|
|
k_smem = ker.st((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
v_smem = ker.st((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
|
|
q_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
q_reg_transposed = ker.rt((D, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
k_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
k_reg_transposed = ker.rt((D, KV_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
v_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16, TileLayout.COL)
|
|
o_reg = ker.rt((D, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
o_reg_transposed = ker.rt((Q_BLOCK_SIZE, D), dtypes.float32)
|
|
att_block = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
att_block_mma = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
mask_reg = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.float32)
|
|
mask_reg_transposed = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
|
|
max_vec_last = ker.rv(KV_BLOCK_SIZE, dtypes.float32)
|
|
max_vec = ker.rv(KV_BLOCK_SIZE, dtypes.float32)
|
|
norm_vec = ker.rv(KV_BLOCK_SIZE, dtypes.float32)
|
|
scale_vec = ker.rv(KV_BLOCK_SIZE, dtypes.float32)
|
|
|
|
max_vec = warp.neg_inf(max_vec)
|
|
norm_vec = warp.zero(norm_vec)
|
|
o_reg = warp.zero(o_reg)
|
|
scale_vec = warp.ones(scale_vec)
|
|
|
|
# load q tile
|
|
q_reg = warp.load(q_reg, q, (), (batch, q_seq, head, 0), axis=1)
|
|
q_reg_transposed = warp.transpose(q_reg_transposed, q_reg)
|
|
|
|
for kv_idx in ker.range(N // KV_BLOCK_SIZE):
|
|
k_smem = warp.load(k_smem, k, (), (batch, kv_idx, head_kv, 0), axis=1)
|
|
v_smem = warp.load(v_smem, v, (), (batch, kv_idx, head_kv, 0), axis=1)
|
|
|
|
k_reg = warp.load(k_reg, k_smem)
|
|
v_reg = warp.load(v_reg, v_smem)
|
|
|
|
# mma qk^t
|
|
att_block = warp.zero(att_block.after(kv_idx))
|
|
k_reg_transposed = warp.transpose(k_reg_transposed, k_reg)
|
|
att_block = warp.mma_AtB(att_block, k_reg_transposed, q_reg_transposed)
|
|
att_block *= (1.0 / math.sqrt(D)) * (1.0 / math.log(2))
|
|
|
|
# apply attention mask
|
|
mask_reg = warp.load(mask_reg, mask, (), (batch, 0, q_seq, kv_idx), axis=2)
|
|
mask_reg_transposed = warp.transpose(mask_reg_transposed, mask_reg)
|
|
att_block += mask_reg_transposed
|
|
|
|
# softmax
|
|
max_vec_last = warp.copy(max_vec_last.after(kv_idx), max_vec)
|
|
max_vec = warp.row_reduce(max_vec.after(max_vec_last), att_block, lambda a, b: a.maximum(b), init_value=-math.inf)
|
|
|
|
scale_vec = warp.map(scale_vec.after(max_vec_last, max_vec), lambda _, idx: max_vec_last[*idx] - max_vec[*idx])
|
|
scale_vec = scale_vec.exp2()
|
|
|
|
o_reg *= scale_vec
|
|
norm_vec *= scale_vec
|
|
|
|
att_block -= max_vec
|
|
att_block = att_block.exp2()
|
|
|
|
norm_vec = warp.row_reduce(norm_vec.after(scale_vec), att_block, lambda a, b: a + b)
|
|
|
|
# mma av
|
|
att_block_mma = warp.copy(att_block_mma.after(kv_idx, norm_vec), att_block)
|
|
o_reg = warp.mma_AtB(o_reg, v_reg, att_block_mma)
|
|
o_reg = ker.endrange()
|
|
norm_vec = norm_vec.after(o_reg)
|
|
max_vec = max_vec.after(o_reg)
|
|
|
|
o_reg /= norm_vec
|
|
|
|
o_reg_transposed = warp.transpose(o_reg_transposed, o_reg)
|
|
o = warp.store(o, o_reg_transposed, (batch, q_seq, head, 0), (), axis=1)
|
|
|
|
norm_vec = norm_vec.after(o)
|
|
max_vec = max_vec.after(o)
|
|
|
|
max_vec *= math.log(2)
|
|
norm_vec = norm_vec.log2() * math.log(2)
|
|
norm_vec += max_vec
|
|
l_vec = warp.store(l_vec, norm_vec, (batch, head, 0, q_seq), (), axis=2)
|
|
o = o.after(l_vec)
|
|
|
|
return ker.finish()
|
|
|
|
def custom_backward_q(dqu:UOp, dou:UOp, qu:UOp, ku:UOp, vu:UOp, masku:UOp, l_vecu:UOp, delta_vecu:UOp) -> UOp:
|
|
with Kernel("fa_custom_backward_q", (H, N // (Q_BLOCK_SIZE*NUM_WORKERS), B), NUM_WORKERS * WARP_THREADS) as ker:
|
|
warp = ker.warp
|
|
|
|
dq, do, q, k, v, mask = GL(dqu, ker), GL(dou, ker), GL(qu, ker), GL(ku, ker), GL(vu, ker), GL(masku, ker)
|
|
l_vec, delta_vec = GL(l_vecu, ker), GL(delta_vecu, ker)
|
|
|
|
head = ker.blockIdx_x
|
|
head_kv = head // GROUP_SIZE
|
|
batch = ker.blockIdx_z
|
|
q_seq = ker.blockIdx_y * NUM_WORKERS + ker.warpid
|
|
|
|
k_smem = ker.st((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
v_smem = ker.st((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
|
|
q_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
q_reg_t = ker.rt((D, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
k_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
k_reg_t = ker.rt((D, KV_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
k_reg_col = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16, TileLayout.COL)
|
|
k_reg_col_t = ker.rt((D, KV_BLOCK_SIZE), dtypes.bfloat16)
|
|
v_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
mask_reg = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.float32)
|
|
mask_reg_transposed = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
|
|
dq_reg = ker.rt((D, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
dq_reg_transposed = ker.rt((Q_BLOCK_SIZE, D), dtypes.float32)
|
|
do_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
|
|
dp_block = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
att_block = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
att_block_mma = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
|
|
l_vec_reg = ker.rv(Q_BLOCK_SIZE, dtypes.float32)
|
|
delta_vec_reg = ker.rv(Q_BLOCK_SIZE, dtypes.float32)
|
|
|
|
dq_reg = warp.zero(dq_reg)
|
|
|
|
# load q tile
|
|
q_reg = warp.load(q_reg, q, (), (batch, q_seq, head, 0), axis=1)
|
|
q_reg_t = warp.transpose(q_reg_t, q_reg)
|
|
|
|
# load do tile
|
|
do_reg = warp.load(do_reg, do, (), (batch, q_seq, head, 0), axis=1)
|
|
|
|
# load l_vec
|
|
l_vec_reg = warp.load(l_vec_reg, l_vec, (), (batch, head, 0, q_seq), axis=2)
|
|
l_vec_reg *= 1.0 / math.log(2)
|
|
delta_vec_reg = warp.load(delta_vec_reg, delta_vec, (), (batch, head, 0, q_seq), axis=2)
|
|
|
|
for kv_idx in ker.range(N // KV_BLOCK_SIZE):
|
|
k_smem = warp.load(k_smem, k, (), (batch, kv_idx, head_kv, 0), axis=1)
|
|
v_smem = warp.load(v_smem, v, (), (batch, kv_idx, head_kv, 0), axis=1)
|
|
|
|
k_reg = warp.load(k_reg, k_smem)
|
|
k_reg_t = warp.transpose(k_reg_t, k_reg)
|
|
k_reg_col = warp.load(k_reg_col, k_smem)
|
|
k_reg_col_t = warp.transpose(k_reg_col_t, k_reg_col)
|
|
v_reg = warp.load(v_reg, v_smem)
|
|
|
|
# mma qk^t
|
|
att_block = warp.zero(att_block.after(kv_idx))
|
|
att_block = warp.mma_AtB(att_block, k_reg_t, q_reg_t)
|
|
|
|
# apply attention mask
|
|
mask_reg = warp.load(mask_reg, mask, (), (batch, 0, q_seq, kv_idx), axis=2)
|
|
mask_reg_transposed = warp.transpose(mask_reg_transposed, mask_reg)
|
|
att_block += mask_reg_transposed
|
|
|
|
att_block *= (1.0 / math.sqrt(D)) * (1.0 / math.log(2))
|
|
att_block -= l_vec_reg
|
|
att_block = att_block.exp2()
|
|
|
|
dp_block = warp.zero(dp_block.after(kv_idx, att_block))
|
|
dp_block = warp.mma_ABt(dp_block, v_reg, do_reg)
|
|
dp_block -= delta_vec_reg
|
|
att_block *= dp_block
|
|
|
|
att_block_mma = warp.copy(att_block_mma.after(att_block), att_block)
|
|
dq_reg = warp.mma_AB(dq_reg, k_reg_col_t, att_block_mma)
|
|
dq_reg = ker.endrange()
|
|
|
|
dq_reg *= 1.0 / math.sqrt(D)
|
|
dq_reg_transposed = warp.transpose(dq_reg_transposed, dq_reg)
|
|
dq = warp.store(dq, dq_reg_transposed, (batch, q_seq, head, 0), axis=1)
|
|
|
|
return ker.finish()
|
|
|
|
def custom_backward_k(dku:UOp, dou:UOp, qu:UOp, ku:UOp, vu:UOp, masku:UOp, l_vecu:UOp, delta_vecu:UOp) -> UOp:
|
|
with Kernel("fa_custom_backward_k", (H_KV, N // (KV_BLOCK_SIZE*NUM_WORKERS), B), NUM_WORKERS * WARP_THREADS) as ker:
|
|
warp = ker.warp
|
|
|
|
dk, do, q, k, v, mask = GL(dku, ker), GL(dou, ker), GL(qu, ker), GL(ku, ker), GL(vu, ker), GL(masku, ker)
|
|
l_vec, delta_vec = GL(l_vecu, ker), GL(delta_vecu, ker)
|
|
|
|
head_kv = ker.blockIdx_x
|
|
batch = ker.blockIdx_z
|
|
kv_seq = ker.blockIdx_y * NUM_WORKERS + ker.warpid
|
|
|
|
q_smem = ker.st((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
do_smem = ker.st((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
att_smem = ker.st((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.bfloat16)
|
|
|
|
q_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
q_reg_t = ker.rt((D, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
q_reg_col = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16, TileLayout.COL)
|
|
k_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
k_reg_t = ker.rt((D, KV_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
v_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
mask_reg = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.float32)
|
|
mask_reg_transposed = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
|
|
dk_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.float32, TileLayout.COL)
|
|
do_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
do_reg_col = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16, TileLayout.COL)
|
|
|
|
dp_block = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
att_block = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
att_block_mma = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
att_block_transposed = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
att_block_row = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.bfloat16)
|
|
|
|
l_vec_reg = ker.rv(Q_BLOCK_SIZE, dtypes.float32)
|
|
delta_vec_reg = ker.rv(Q_BLOCK_SIZE, dtypes.float32)
|
|
|
|
dk_reg = warp.zero(dk_reg)
|
|
|
|
# load kv tile
|
|
k_reg = warp.load(k_reg, k, (), (batch, kv_seq, head_kv, 0), axis=1)
|
|
k_reg_t = warp.transpose(k_reg_t, k_reg)
|
|
v_reg = warp.load(v_reg, v, (), (batch, kv_seq, head_kv, 0), axis=1)
|
|
|
|
for q_idx in ker.range(N // Q_BLOCK_SIZE):
|
|
for g in ker.range(GROUP_SIZE):
|
|
head_q = head_kv * GROUP_SIZE + g
|
|
|
|
# load q and do
|
|
q_smem = warp.load(q_smem, q, (), (batch, q_idx, head_q, 0), axis=1)
|
|
do_smem = warp.load(do_smem, do, (), (batch, q_idx, head_q, 0), axis=1)
|
|
|
|
q_reg = warp.load(q_reg, q_smem)
|
|
q_reg_t = warp.transpose(q_reg_t, q_reg)
|
|
q_reg_col = warp.load(q_reg_col, q_smem)
|
|
do_reg = warp.load(do_reg, do_smem)
|
|
do_reg_col = warp.load(do_reg_col, do_smem)
|
|
|
|
# load l_vec and delta_vec
|
|
l_vec_reg = warp.load(l_vec_reg, l_vec, (), (batch, head_q, 0, q_idx), axis=2)
|
|
l_vec_reg *= 1.0 / math.log(2)
|
|
delta_vec_reg = warp.load(delta_vec_reg, delta_vec, (), (batch, head_q, 0, q_idx), axis=2)
|
|
|
|
# mma qk^t
|
|
att_block = warp.zero(att_block.after(g))
|
|
att_block = warp.mma_AtB(att_block, k_reg_t, q_reg_t)
|
|
|
|
# apply attention mask
|
|
mask_reg = warp.load(mask_reg, mask, (), (batch, 0, q_idx, kv_seq), axis=2)
|
|
mask_reg_transposed = warp.transpose(mask_reg_transposed, mask_reg)
|
|
att_block += mask_reg_transposed
|
|
|
|
att_block *= (1.0 / math.sqrt(D)) * (1.0 / math.log(2))
|
|
att_block -= l_vec_reg
|
|
att_block = att_block.exp2()
|
|
|
|
dp_block = warp.zero(dp_block.after(g, q_idx))
|
|
dp_block = warp.mma_ABt(dp_block, v_reg, do_reg)
|
|
dp_block -= delta_vec_reg
|
|
att_block *= dp_block
|
|
|
|
att_block_mma = warp.copy(att_block_mma, att_block)
|
|
att_block_transposed = warp.transpose(att_block_transposed, att_block_mma)
|
|
att_smem = warp.store(att_smem, att_block_transposed)
|
|
att_block_row = warp.load(att_block_row, att_smem)
|
|
dk_reg = warp.mma_AB(dk_reg, att_block_row, q_reg_col)
|
|
dk_reg = ker.endrange(2)
|
|
|
|
dk_reg *= 1.0 / math.sqrt(D)
|
|
|
|
dk = warp.store(dk, dk_reg, (batch, kv_seq, head_kv, 0), axis=1)
|
|
|
|
return ker.finish()
|
|
|
|
def custom_backward_v(dvu:UOp, dou:UOp, qu:UOp, ku:UOp, vu:UOp, masku:UOp, l_vecu:UOp, delta_vecu:UOp) -> UOp:
|
|
with Kernel("fa_custom_backward_v", (H_KV, N // (KV_BLOCK_SIZE*NUM_WORKERS), B), NUM_WORKERS * WARP_THREADS) as ker:
|
|
warp = ker.warp
|
|
|
|
dv, do, q, k, v, mask = GL(dvu, ker), GL(dou, ker), GL(qu, ker), GL(ku, ker), GL(vu, ker), GL(masku, ker)
|
|
l_vec, delta_vec = GL(l_vecu, ker), GL(delta_vecu, ker)
|
|
|
|
head_kv = ker.blockIdx_x
|
|
batch = ker.blockIdx_z
|
|
kv_seq = ker.blockIdx_y * NUM_WORKERS + ker.warpid
|
|
|
|
q_smem = ker.st((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
do_smem = ker.st((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
att_smem = ker.st((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.bfloat16)
|
|
|
|
q_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
q_reg_t = ker.rt((D, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
q_reg_col = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16, TileLayout.COL)
|
|
k_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
k_reg_t = ker.rt((D, KV_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
v_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
mask_reg = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.float32)
|
|
mask_reg_transposed = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
|
|
dv_reg = ker.rt((KV_BLOCK_SIZE, D), dtypes.float32, TileLayout.COL)
|
|
do_reg = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16)
|
|
do_reg_col = ker.rt((Q_BLOCK_SIZE, D), dtypes.bfloat16, TileLayout.COL)
|
|
|
|
att_block = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.float32, TileLayout.COL)
|
|
att_block_mma = ker.rt((KV_BLOCK_SIZE, Q_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
att_block_transposed = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.bfloat16, TileLayout.COL)
|
|
att_block_row = ker.rt((Q_BLOCK_SIZE, KV_BLOCK_SIZE), dtypes.bfloat16)
|
|
|
|
l_vec_reg = ker.rv(Q_BLOCK_SIZE, dtypes.float32)
|
|
delta_vec_reg = ker.rv(Q_BLOCK_SIZE, dtypes.float32)
|
|
|
|
dv_reg = warp.zero(dv_reg)
|
|
|
|
# load kv tile
|
|
k_reg = warp.load(k_reg, k, (), (batch, kv_seq, head_kv, 0), axis=1)
|
|
k_reg_t = warp.transpose(k_reg_t, k_reg)
|
|
v_reg = warp.load(v_reg, v, (), (batch, kv_seq, head_kv, 0), axis=1)
|
|
|
|
for q_idx in ker.range(N // Q_BLOCK_SIZE):
|
|
for g in ker.range(GROUP_SIZE):
|
|
head_q = head_kv * GROUP_SIZE + g
|
|
|
|
# load q and do
|
|
q_smem = warp.load(q_smem, q, (), (batch, q_idx, head_q, 0), axis=1)
|
|
do_smem = warp.load(do_smem, do, (), (batch, q_idx, head_q, 0), axis=1)
|
|
|
|
q_reg = warp.load(q_reg, q_smem)
|
|
q_reg_t = warp.transpose(q_reg_t, q_reg)
|
|
q_reg_col = warp.load(q_reg_col, q_smem)
|
|
do_reg = warp.load(do_reg, do_smem)
|
|
do_reg_col = warp.load(do_reg_col, do_smem)
|
|
|
|
# load l_vec and delta_vec
|
|
l_vec_reg = warp.load(l_vec_reg, l_vec, (), (batch, head_q, 0, q_idx), axis=2)
|
|
l_vec_reg *= 1.0 / math.log(2)
|
|
delta_vec_reg = warp.load(delta_vec_reg, delta_vec, (), (batch, head_q, 0, q_idx), axis=2)
|
|
|
|
# mma qk^t
|
|
att_block = warp.zero(att_block.after(g))
|
|
att_block = warp.mma_AtB(att_block, k_reg_t, q_reg_t)
|
|
|
|
# apply attention mask
|
|
mask_reg = warp.load(mask_reg, mask, (), (batch, 0, q_idx, kv_seq), axis=2)
|
|
mask_reg_transposed = warp.transpose(mask_reg_transposed, mask_reg)
|
|
att_block += mask_reg_transposed
|
|
|
|
att_block *= (1.0 / math.sqrt(D)) * (1.0 / math.log(2))
|
|
att_block -= l_vec_reg
|
|
att_block = att_block.exp2()
|
|
|
|
att_block_mma = warp.copy(att_block_mma, att_block)
|
|
att_block_transposed = warp.transpose(att_block_transposed, att_block_mma)
|
|
att_smem = warp.store(att_smem, att_block_transposed)
|
|
att_block_row = warp.load(att_block_row, att_smem)
|
|
dv_reg = warp.mma_AB(dv_reg, att_block_row, do_reg_col)
|
|
dv_reg = ker.endrange(2)
|
|
|
|
dv = warp.store(dv, dv_reg, (batch, kv_seq, head_kv, 0), axis=1)
|
|
|
|
return ker.finish()
|
|
|
|
if is_causal:
|
|
if attn_mask is not None: raise RuntimeError("cannot set attn_mask when is_causal=True")
|
|
attn_mask = Tensor.ones((B, 1, N, N), requires_grad=False, device=xq.device, dtype=dtypes.bool).tril()
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == dtypes.bool: attn_mask = attn_mask.where(0, -float("inf"))
|
|
else:
|
|
attn_mask = Tensor.zeros((B, 1, N, N), requires_grad=False, device=xq.device, dtype=dtypes.float32)
|
|
|
|
attn = Tensor.empty_like(xq)
|
|
l_vec = Tensor.empty(B, H, 1, N, requires_grad=False, device=xq.device, dtype=dtypes.float32).detach()
|
|
|
|
def grad(gradu:UOp, kernel:UOp) -> tuple[None, None, UOp, UOp, UOp, None]:
|
|
grad = Tensor(gradu)
|
|
grad_q = Tensor.empty_like(q := Tensor(kernel.src[2]))
|
|
grad_k = Tensor.empty_like(k := Tensor(kernel.src[3]))
|
|
grad_v = Tensor.empty_like(v := Tensor(kernel.src[4]))
|
|
mask = Tensor(kernel.src[5])
|
|
|
|
delta_vec = (grad * attn).sum(-1, dtype=dtypes.float32).transpose(1, 2).unsqueeze(-2).detach()
|
|
|
|
grad_q = Tensor.custom_kernel(grad_q, grad, q, k, v, mask, l_vec, delta_vec, fxn=custom_backward_q)[0]
|
|
grad_k = Tensor.custom_kernel(grad_k, grad, q, k, v, mask, l_vec, delta_vec, fxn=custom_backward_k)[0]
|
|
grad_v = Tensor.custom_kernel(grad_v, grad, q, k, v, mask, l_vec, delta_vec, fxn=custom_backward_v)[0]
|
|
return (None, None, grad_q.uop, grad_k.uop, grad_v.uop, None)
|
|
|
|
attn, l_vec = Tensor.custom_kernel(attn, l_vec, xq, xk, xv, attn_mask, fxn=custom_forward, grad_fxn=grad)[:2]
|
|
attn = attn[:, :N_, :, :D_]
|
|
|
|
return attn.transpose(1, 2).cast(odtype)
|