Files
tinygrad/test/unit/test_linalg.py
Sieds Lykles 9f39f6391c shared_codegen_spec and fix index spec (#12967)
* split shared_codegen_spec and fix index

* add VCONST to program_spec and move index to shared_codegen_spec

* working ignore_oob=0

* cleanup

* fix spec

* undo that

* move barrier and special earlier

* fix more spec issues

* more updates

* remove special from program_spec

* cleanup and fixes

* move more to shared

* special is not in shared_spec

* some comments

* dont do bounds check there
2025-10-29 09:14:11 +01:00

80 lines
3.4 KiB
Python

import unittest, functools
from tinygrad import Tensor, Context
import numpy as np
def orthogonality_helper(A:Tensor, tolerance=1e-5):
b_shape,m = A.shape[0:-2],A.shape[-2] #outer dimension should be the dim along orthogonality
A_identity = (Tensor.eye(m).reshape((1,)*len(b_shape)+(m,m)).expand(b_shape+(m,m)))
np.testing.assert_allclose((A @ A.transpose(-2,-1)).numpy(),A_identity.numpy(),atol=tolerance,rtol=tolerance)
def reconstruction_helper(A:list[Tensor],B:Tensor, tolerance=1e-5):
reconstructed_tensor = functools.reduce(Tensor.matmul, A)
np.testing.assert_allclose(reconstructed_tensor.numpy(),B.numpy(),atol=tolerance,rtol=tolerance)
class TestLinAlg(unittest.TestCase):
@unittest.skip("TODO: reenable this")
def test_svd_general(self):
sizes = [(2,2),(5,3),(3,5),(3,4,4),(2,2,2,2,3)]
for size in sizes:
a = Tensor.randn(size).realize()
U,S,V = a.svd()
b_shape,m,n = size[0:-2],size[-2],size[-1]
k = min(m,n)
s_diag = (S.unsqueeze(-2) * Tensor.eye(k).reshape((1,) * len(b_shape) + (k,k)))
s_diag = s_diag.expand(b_shape + (k,k)).pad(tuple([None]*len(b_shape) + [(0,m-k), (0,n-k)]))
orthogonality_helper(U)
orthogonality_helper(V)
reconstruction_helper([U,s_diag,V],a)
def _test_svd_nonfull(self, size):
with Context(IGNORE_OOB=1): # sometimes this is slow in CI
a = Tensor.randn(size).realize()
U,S,V = a.svd(full_matrices=False)
b_shape,m,n = size[0:-2],size[-2],size[-1]
k = min(m,n)
s_diag = (S.unsqueeze(-2) * Tensor.eye(k).reshape((1,) * len(b_shape) + (k,k)).expand(b_shape + (k,k)))
#reduced U,V is only orthogonal along smaller dim
if (m < n): orthogonality_helper(U),orthogonality_helper(V)
else: orthogonality_helper(U.transpose(-2,-1)),orthogonality_helper(V.transpose(-2,-1))
reconstruction_helper([U,s_diag,V],a)
# faster for parallel pytest
def test_svd_nonfull_2_2(self): self._test_svd_nonfull((2,2))
def test_svd_nonfull_5_3(self): self._test_svd_nonfull((5,3))
def test_svd_nonfull_3_5(self): self._test_svd_nonfull((3,5))
def test_svd_nonfull_2_2_2_2_3(self): self._test_svd_nonfull((2,2,2,2,3))
@unittest.skip("very big. recommend wrapping with TinyJit around inner function")
def test_svd_large(self):
size = (1024,1024)
a = Tensor.randn(size).realize()
U,S,V = a.svd()
b_shape,m,n = size[0:-2],size[-2],size[-1]
k = min(m,n)
s_diag = (S.unsqueeze(-2) * Tensor.eye(k).reshape((1,) * len(b_shape) + (k,k)))
s_diag = s_diag.expand(b_shape + (k,k)).pad(tuple([None]*len(b_shape) + [(0,m-k), (0,n-k)]))
orthogonality_helper(U,tolerance=1e-3)
orthogonality_helper(V,tolerance=1e-3)
reconstruction_helper([U,s_diag,V],a,tolerance=1e-3)
def test_qr_general(self):
sizes = [(3,3),(3,6),(6,3),(2,2,2,2,2)]
for size in sizes:
a = Tensor.randn(size).realize()
Q,R = a.qr()
orthogonality_helper(Q)
reconstruction_helper([Q,R],a)
def test_newton_schulz(self):
coefficients = [(2, -1.5, 0.5), (2.0, -1.4, 0.2, 0.2)]#these params map to the sign function
sizes = [(2,2), (3,2), (2,3), (2,2,2)]
for coefs in coefficients:
for size in sizes:
a = Tensor.randn(size)
b = a.newton_schulz(steps=20, params=coefs, eps=0.0)
# ns(A) = U @ Vt -> (U @ Vt) @ (U @ Vt)t = I
orthogonality_helper(b if size[-1] > size[-2] else b.transpose(-2, -1), tolerance=1e-3)
if __name__ == "__main__":
unittest.main()