Files
tinygrad/test/test_dtype.py
George Hotz a280cfe169 move dtypes to dtype.py (#2964)
* move dtypes to dtype.py

* fix urllib
2024-01-01 14:58:48 -08:00

456 lines
23 KiB
Python

import unittest
import numpy as np
import torch
import operator
from tinygrad.helpers import CI, getenv, DEBUG, OSX, temp
from tinygrad.dtype import DType, DTYPES_DICT, ImageDType, PtrDType, least_upper_float, least_upper_dtype
from tinygrad import Device
from tinygrad.tensor import Tensor, dtypes
from typing import Any, List
from hypothesis import given, settings, strategies as st
core_dtypes = list(DTYPES_DICT.values())
floats = [dt for dt in core_dtypes if dtypes.is_float(dt)]
def is_dtype_supported(dtype: DType, device: str = Device.DEFAULT):
# for GPU, cl_khr_fp16 isn't supported
# for LLVM, it segfaults because it can't link to the casting function
# CUDA in CI uses CUDACPU that does not support half
if dtype == dtypes.half: return not (CI and device in ["GPU", "LLVM", "CUDA"]) and device != "WEBGPU"
if dtype == dtypes.bfloat16: return False # numpy doesn't support bf16, tested separately in TestBFloat16DType
# TODO: is this correct? it reduces to only GPU on non-OSX
if dtype == dtypes.float64: return device not in ["WEBGPU", "METAL"] and (not OSX and device == "GPU")
if dtype in [dtypes.int8, dtypes.uint8]: return device not in ["WEBGPU"]
if dtype in [dtypes.int16, dtypes.uint16]: return device not in ["WEBGPU", "TORCH"]
if dtype == dtypes.uint32: return device not in ["TORCH"]
if dtype in [dtypes.int64, dtypes.uint64]: return device not in ["WEBGPU", "TORCH"]
# for WEBGPU, host-shareablity is a requirement for storage buffers, but 'bool' type is not host-shareable
if dtype == dtypes.bool: return device != "WEBGPU"
return True
def get_available_cast_dtypes(dtype: DType) -> List[DType]:
if not is_dtype_supported(dtype): return []
return [v for k, v in DTYPES_DICT.items() if v != dtype and is_dtype_supported(v) and not k.startswith("_")] # dont cast internal dtypes
def _test_to_np(a:Tensor, np_dtype, target):
if DEBUG >= 2: print(a)
na = a.numpy()
if DEBUG >= 2: print(na, na.dtype, a.lazydata.base.realized)
try:
assert na.dtype == np_dtype
np.testing.assert_allclose(na, target)
except AssertionError as e:
raise AssertionError(f"\ntensor {a.numpy()} does not match target {target} with np_dtype {np_dtype}") from e
def _assert_eq(tensor:Tensor, target_dtype:DType, target):
if DEBUG >= 2: print(tensor.numpy())
try:
assert tensor.dtype == target_dtype
np.testing.assert_allclose(tensor.numpy(), target)
except AssertionError as e:
raise AssertionError(f"\ntensor {tensor.numpy()} dtype {tensor.dtype} does not match target {target} with dtype {target_dtype}") from e
def _test_op(fxn, target_dtype:DType, target):
_assert_eq(fxn(), target_dtype, target)
def _test_cast(a:Tensor, target_dtype:DType):
_test_op(lambda: a.cast(target_dtype), target_dtype, list(a.numpy().astype(target_dtype.np)))
def _test_bitcast(a:Tensor, target_dtype:DType, target=None):
_test_op(lambda: a.bitcast(target_dtype), target_dtype, target or a.numpy().view(target_dtype.np).tolist())
class TestDType(unittest.TestCase):
DTYPE: Any = None
DATA: Any = None
@classmethod
def setUpClass(cls):
if not cls.DTYPE or not is_dtype_supported(cls.DTYPE): raise unittest.SkipTest("dtype not supported")
if dtypes.is_int(cls.DTYPE): cls.DATA = np.random.randint(0, 100, size=10, dtype=cls.DTYPE.np).tolist()
elif cls.DTYPE == dtypes.bool: cls.DATA = np.random.choice([True, False], size=10).tolist()
else: cls.DATA = np.random.uniform(0, 1, size=10).tolist()
def setUp(self):
if self.DTYPE is None: raise unittest.SkipTest("base class")
def test_to_np(self): _test_to_np(Tensor(self.DATA, dtype=self.DTYPE), self.DTYPE.np, np.array(self.DATA, dtype=self.DTYPE.np))
def test_casts_to(self): list(map(
lambda dtype: _test_cast(Tensor(self.DATA, dtype=dtype), self.DTYPE),
get_available_cast_dtypes(self.DTYPE)
))
def test_casts_from(self): list(map(
lambda dtype: _test_cast(Tensor(self.DATA, dtype=self.DTYPE), dtype),
get_available_cast_dtypes(self.DTYPE)
))
def test_same_size_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=self.DTYPE, b_dtype=dtype) if dtype.itemsize == self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_upcast_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=self.DTYPE, b_dtype=dtype) if dtype.itemsize > self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_upcast_to_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=dtype, b_dtype=self.DTYPE) if dtype.itemsize < self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_bitcast(self):
if self.DTYPE == dtypes.bool: raise unittest.SkipTest("no bools in bitcast")
list(map(
lambda dtype:
_test_bitcast(Tensor(self.DATA, dtype=self.DTYPE), dtype) if dtype.itemsize == self.DTYPE.itemsize and dtype != dtypes.bool else None,
get_available_cast_dtypes(self.DTYPE)
))
def _test_ops(a_dtype:DType, b_dtype:DType, target_dtype=None):
target_dtype = target_dtype or least_upper_dtype(a_dtype, b_dtype)
if not is_dtype_supported(a_dtype) or not is_dtype_supported(b_dtype) or not is_dtype_supported(target_dtype): return
if a_dtype == dtypes.bool or b_dtype == dtypes.bool: return
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)+Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [2,4,6,8])
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)*Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [1,4,9,16])
_assert_eq(Tensor([[1,2],[3,4]], dtype=a_dtype)@Tensor.eye(2, dtype=b_dtype), target_dtype, [[1,2],[3,4]])
_assert_eq(Tensor([1,1,1,1], dtype=a_dtype)+Tensor.ones((4,4), dtype=b_dtype), target_dtype, 2*Tensor.ones(4,4).numpy())
@unittest.skipUnless(Device.DEFAULT in ["LLVM", "TORCH"], "bfloat16 not supported")
class TestBFloat16DType(unittest.TestCase):
def test_bf16_to_float(self):
with self.assertRaises(AssertionError):
_test_cast(Tensor([100000], dtype=dtypes.bfloat16), dtypes.float32)
def test_float_to_bf16(self):
with self.assertRaises(AssertionError):
_test_cast(Tensor([100000], dtype=dtypes.float32), dtypes.bfloat16)
# torch.tensor([10000, -1, -1000, -10000, 20]).type(torch.bfloat16)
def test_bf16(self):
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.bfloat16)
t.realize()
back = t.cast(dtypes.float32)
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
def test_bf16_disk_write_read(self):
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.float32)
t.to(f"disk:{temp('f32')}").realize()
# hack to "cast" f32 -> bf16
with open(temp('f32'), "rb") as f: dat = f.read()
adat = b''.join([dat[i+2:i+4] for i in range(0, len(dat), 4)])
with open(temp('bf16'), "wb") as f: f.write(adat)
t = Tensor.empty(5, dtype=dtypes.bfloat16, device=f"disk:{temp('bf16')}").llvm().realize()
back = t.cast(dtypes.float32)
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
class TestHalfDtype(TestDType): DTYPE = dtypes.half
class TestFloatDType(TestDType): DTYPE = dtypes.float
class TestDoubleDtype(TestDType): DTYPE = dtypes.double
class TestInt8Dtype(TestDType):
DTYPE = dtypes.int8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_int8_to_uint8_negative(self):
_test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint8), dtypes.uint8, [255, 254, 253, 252])
class TestUint8Dtype(TestDType):
DTYPE = dtypes.uint8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_uint8_to_int8_overflow(self):
_test_op(lambda: Tensor([255, 254, 253, 252], dtype=dtypes.uint8).cast(dtypes.int8), dtypes.int8, [-1, -2, -3, -4])
class TestBitCast(unittest.TestCase):
def test_shape_change_bitcast(self):
with self.assertRaises(AssertionError):
_test_bitcast(Tensor([100000], dtype=dtypes.float32), dtypes.uint8, [100000])
class TestInt16Dtype(TestDType): DTYPE = dtypes.int16
class TestUint16Dtype(TestDType): DTYPE = dtypes.uint16
class TestInt32Dtype(TestDType): DTYPE = dtypes.int32
class TestUint32Dtype(TestDType): DTYPE = dtypes.uint32
class TestInt64Dtype(TestDType): DTYPE = dtypes.int64
class TestUint64Dtype(TestDType): DTYPE = dtypes.uint64
class TestBoolDtype(TestDType): DTYPE = dtypes.bool
class TestImageDType(unittest.TestCase):
def test_image_scalar(self):
assert dtypes.imagef((10,10)).scalar() == dtypes.float32
assert dtypes.imageh((10,10)).scalar() == dtypes.float32
def test_image_vec(self):
assert dtypes.imagef((10,10)).vec(4) == dtypes.float32.vec(4)
assert dtypes.imageh((10,10)).vec(4) == dtypes.float32.vec(4)
class TestEqStrDType(unittest.TestCase):
def test_image_ne(self):
if ImageDType is None: raise unittest.SkipTest("no ImageDType support")
assert dtypes.float == dtypes.float32, "float doesn't match?"
assert dtypes.imagef((1,2,4)) != dtypes.imageh((1,2,4)), "different image dtype doesn't match"
assert dtypes.imageh((1,2,4)) != dtypes.imageh((1,4,2)), "different shape doesn't match"
assert dtypes.imageh((1,2,4)) == dtypes.imageh((1,2,4)), "same shape matches"
assert isinstance(dtypes.imageh((1,2,4)), ImageDType)
def test_ptr_ne(self):
if PtrDType is None: raise unittest.SkipTest("no PtrDType support")
# TODO: is this the wrong behavior?
assert PtrDType(dtypes.float32) == dtypes.float32
#assert PtrDType(dtypes.float32) == PtrDType(dtypes.float32)
#assert PtrDType(dtypes.float32) != dtypes.float32
def test_strs(self):
if PtrDType is None: raise unittest.SkipTest("no PtrDType support")
self.assertEqual(str(dtypes.imagef((1,2,4))), "dtypes.imagef((1, 2, 4))")
self.assertEqual(str(PtrDType(dtypes.float32)), "ptr.dtypes.float")
class TestHelpers(unittest.TestCase):
signed_ints = (dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64)
uints = (dtypes.uint8, dtypes.uint16, dtypes.uint32, dtypes.uint64)
floats = (dtypes.float16, dtypes.float32, dtypes.float64)
@given(st.sampled_from(signed_ints+uints), st.integers(min_value=1, max_value=8))
def test_is_int(self, dtype, amt):
assert dtypes.is_int(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_float(dtype.vec(amt) if amt > 1 else dtype)
@given(st.sampled_from(uints), st.integers(min_value=1, max_value=8))
def test_is_unsigned_uints(self, dtype, amt):
assert dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
@given(st.sampled_from(signed_ints), st.integers(min_value=1, max_value=8))
def test_is_unsigned_signed_ints(self, dtype, amt):
assert not dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
@given(st.sampled_from(floats), st.integers(min_value=1, max_value=8))
def test_is_float(self, dtype, amt):
assert dtypes.is_float(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_int(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
def test_bf16_is_float(self):
assert dtypes.is_float(dtypes.bfloat16)
@given(st.sampled_from([d for d in DTYPES_DICT.values() if dtypes.is_float(d) or dtypes.is_int(d)]), st.integers(min_value=2, max_value=8))
def test_scalar(self, dtype, amt):
assert dtype.vec(amt).scalar() == dtype
class TestTypeSpec(unittest.TestCase):
def setUp(self):
self.old_default_int, self.old_default_float = dtypes.default_int, dtypes.default_float
def tearDown(self):
dtypes.default_int, dtypes.default_float = self.old_default_int, self.old_default_float
def test_set_dtype_default(self):
dtypes.default_int = dtypes.int16
assert dtypes.default_int == dtypes.int16
dtypes.default_int = dtypes.int64
assert dtypes.default_int == dtypes.int64
dtypes.default_int = dtypes.int32
assert dtypes.default_int == dtypes.int32
dtypes.default_float = dtypes.float16
assert dtypes.default_float == dtypes.float16
dtypes.default_float = dtypes.float64
assert dtypes.default_float == dtypes.float64
@given(st.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), st.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_creation(self, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor(True).dtype == dtypes.bool
assert Tensor(None).dtype == dtypes.default_float
assert Tensor(2).dtype == dtypes.default_int
assert Tensor(2.34).dtype == dtypes.default_float
assert Tensor([]).dtype == dtypes.default_float
assert Tensor([1]).dtype == dtypes.default_int
assert Tensor([1.1]).dtype == dtypes.default_float
assert Tensor([0,1], dtype=dtypes.bfloat16).dtype == dtypes.bfloat16
assert Tensor.eye(0).dtype == dtypes.default_float
assert Tensor.eye(3).dtype == dtypes.default_float
assert Tensor.eye(3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.eye(3, dtype=dtypes.int64).dtype == dtypes.int64
@given(st.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), st.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_full(self, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor.ones([2,3]).dtype == dtypes.default_float
assert Tensor.zeros([2,3]).dtype == dtypes.default_float
assert Tensor.full([2,3], 3.3).dtype == dtypes.default_float
assert Tensor.full([2,3], 3).dtype == dtypes.default_int
assert Tensor.full([2,3], True).dtype == dtypes.bool
assert Tensor.zeros(3, 3).dtype == dtypes.default_float
assert Tensor.zeros(3, 3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.zeros(3, 3, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.ones(3, 3).dtype == dtypes.default_float
assert Tensor.ones(3, 3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.ones(3, 3, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.full((3, 3), 3).dtype == dtypes.default_int
assert Tensor.full((3, 3), 3.0).dtype == dtypes.default_float
assert Tensor.full((3, 3), 3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.full((3, 3), 3, dtype=dtypes.int64).dtype == dtypes.int64
def test_reduce_0d_default(self):
assert Tensor.ones([2,3,0]).sum(2).dtype == dtypes.default_float
# assert Tensor.ones([2,3,0], dtype=dtypes.int).sum(2).dtype == dtypes.int # requires reduceop acc fix
@given(st.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), st.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_arange(self, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor.arange(5).dtype == dtypes.default_int
assert Tensor.arange(5.0).dtype == dtypes.default_float
assert Tensor.arange(5, dtype=dtypes.int16).dtype == dtypes.int16
assert Tensor.arange(5, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.arange(5, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.arange(3, 9, 0.7).dtype == dtypes.default_float
assert Tensor.arange(3, 8.5, 3).dtype == dtypes.default_float
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "WEBGPU doesn't follow the bool ops spec")
@given(st.sampled_from(core_dtypes), st.sampled_from([operator.gt, operator.ge, operator.le, operator.lt, operator.eq, operator.ne]))
def test_bool_ops(self, dtype, op):
assert op(Tensor.rand(4, 4, dtype=dtype), Tensor.rand(4, 4, dtype=dtype)).dtype == dtypes.bool
@given(st.sampled_from(core_dtypes),
st.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), st.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_functions_return_index(self, dtype, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor([0, 1], dtype=dtype).argmax().dtype == dtypes.default_int
assert Tensor([0, 1], dtype=dtype).argmin().dtype == dtypes.default_int
assert Tensor([0, 1], dtype=dtype).multinomial().dtype == dtypes.default_int
class TestTypePromotion(unittest.TestCase):
@given(st.sampled_from(core_dtypes))
def test_self_promo_to_self(self, dtype):
assert least_upper_dtype(dtype) == dtype
assert least_upper_dtype(dtype, dtype) == dtype
assert least_upper_dtype(dtype, dtype, dtype) == dtype
@given(st.sampled_from(core_dtypes), st.sampled_from(core_dtypes))
def test_promo_resulted_higher_than_inputs(self, dtype1, dtype2):
result = least_upper_dtype(dtype1, dtype2)
assert result >= dtype1 and result >= dtype2
def test_dtype_promo(self):
assert least_upper_dtype(dtypes.bool, dtypes.int8) == dtypes.int8
assert least_upper_dtype(dtypes.int8, dtypes.uint8) == dtypes.int16
assert least_upper_dtype(dtypes.uint8, dtypes.int16) == dtypes.int16
assert least_upper_dtype(dtypes.int16, dtypes.uint16) == dtypes.int32
assert least_upper_dtype(dtypes.uint16, dtypes.int32) == dtypes.int32
assert least_upper_dtype(dtypes.int32, dtypes.uint32) == dtypes.int64
assert least_upper_dtype(dtypes.uint32, dtypes.int64) == dtypes.int64
# similar to jax but we don't use weak type
assert least_upper_dtype(dtypes.int64, dtypes.uint64) == dtypes.float16
assert least_upper_dtype(dtypes.float16, dtypes.float32) == dtypes.float32
assert least_upper_dtype(dtypes.float32, dtypes.float64) == dtypes.float64
assert least_upper_dtype(dtypes.bool, dtypes.float32) == dtypes.float32
assert least_upper_dtype(dtypes.bool, dtypes.float64) == dtypes.float64
assert least_upper_dtype(dtypes.float16, dtypes.int64) == dtypes.float16
assert least_upper_dtype(dtypes.float16, dtypes.uint64) == dtypes.float16
@given(st.sampled_from(floats))
def test_float_to_float(self, dt):
assert least_upper_float(dt) == dt
class TestAutoCastType(unittest.TestCase):
def setUp(self):
self.old_default_int, self.old_default_float = dtypes.default_int, dtypes.default_float
def tearDown(self):
dtypes.default_int, dtypes.default_float = self.old_default_int, self.old_default_float
@given(st.sampled_from([d for d in DTYPES_DICT.values() if dtypes.is_int(d) and is_dtype_supported(d)]))
@settings(deadline=None)
def test_int_to_float_unary_func(self, dtype):
for func in [
lambda t: t.exp(),
lambda t: t.exp2(),
lambda t: t.log(),
lambda t: t.log2(),
lambda t: t.sqrt(),
lambda t: t.rsqrt(),
lambda t: t.sin(),
lambda t: t.cos(),
lambda t: t.tan(),
lambda t: t.sigmoid(),
]:
a = [2, 3, 4]
# float16 can have larger precision errors
np.testing.assert_allclose(func(Tensor(a, dtype=dtype)).numpy(), func(torch.tensor(a)), rtol=1e-3, atol=1e-3)
@given(st.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_broadcast_float(self, default_float):
dtypes.default_float = default_float
assert (Tensor.rand(4, 4, dtype=dtypes.bool) + 2.3).dtype == dtypes.default_float
assert (Tensor.rand(4, 4, dtype=dtypes.int) + 2.3).dtype == dtypes.default_float
assert (Tensor.rand(4, 4, dtype=dtypes.int8) + 2.3).dtype == dtypes.default_float
assert (Tensor.rand(4, 4, dtype=dtypes.uint64) + 2.3).dtype == dtypes.default_float
assert (Tensor.rand(4, 4, dtype=dtypes.float16) + 2.3).dtype == dtypes.float16
assert (Tensor.rand(4, 4, dtype=dtypes.bfloat16) + 2.3).dtype == dtypes.bfloat16
assert (Tensor.rand(4, 4, dtype=dtypes.float32) + 2.3).dtype == dtypes.float32
assert (Tensor.rand(4, 4, dtype=dtypes.float64) + 2.3).dtype == dtypes.float64
@given(st.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]))
def test_broadcast_int(self, default_int):
dtypes.default_int = default_int
assert (Tensor.rand(4, 4, dtype=dtypes.bool) + 2).dtype == dtypes.default_int
assert (Tensor.rand(4, 4, dtype=dtypes.int) + 2).dtype == dtypes.int
assert (Tensor.rand(4, 4, dtype=dtypes.int8) + 2).dtype == dtypes.int8
assert (Tensor.rand(4, 4, dtype=dtypes.uint64) + 2).dtype == dtypes.uint64
assert (Tensor.rand(4, 4, dtype=dtypes.float16) + 2).dtype == dtypes.float16
assert (Tensor.rand(4, 4, dtype=dtypes.bfloat16) + 2).dtype == dtypes.bfloat16
assert (Tensor.rand(4, 4, dtype=dtypes.float32) + 2).dtype == dtypes.float32
assert (Tensor.rand(4, 4, dtype=dtypes.float64) + 2).dtype == dtypes.float64
def test_broadcast_bool(self):
if Device.DEFAULT != "WEBGPU":
assert (Tensor([0, 1], dtype=dtypes.bool) + True).dtype == dtypes.bool
assert (Tensor([0, 1], dtype=dtypes.int) + True).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int8) + True).dtype == dtypes.int8
assert (Tensor([0, 1], dtype=dtypes.uint64) + True).dtype == dtypes.uint64
assert (Tensor([0, 1], dtype=dtypes.float16) + True).dtype == dtypes.float16
assert (Tensor([0, 1], dtype=dtypes.bfloat16) + True).dtype == dtypes.bfloat16
assert (Tensor([0, 1], dtype=dtypes.float32) + True).dtype == dtypes.float32
assert (Tensor([0, 1], dtype=dtypes.float64) + True).dtype == dtypes.float64
def test_sum(self):
assert (Tensor([0, 1], dtype=dtypes.bool)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int8)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int16)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int32)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int64)).sum().dtype == dtypes.int64
assert (Tensor([0, 1], dtype=dtypes.uint8)).sum().dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint16)).sum().dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint32)).sum().dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint64)).sum().dtype == dtypes.uint64
assert (Tensor([0, 1], dtype=dtypes.float16)).sum().dtype == dtypes.float16
assert (Tensor([0, 1], dtype=dtypes.bfloat16)).sum().dtype == dtypes.bfloat16
assert (Tensor([0, 1], dtype=dtypes.float32)).sum().dtype == dtypes.float32
assert (Tensor([0, 1], dtype=dtypes.float64)).sum().dtype == dtypes.float64
def test_cumsum(self):
assert (Tensor([0, 1], dtype=dtypes.bool)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int8)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int16)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int32)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int64)).cumsum(0).dtype == dtypes.int64
assert (Tensor([0, 1], dtype=dtypes.uint8)).cumsum(0).dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint16)).cumsum(0).dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint32)).cumsum(0).dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint64)).cumsum(0).dtype == dtypes.uint64
assert (Tensor([0, 1], dtype=dtypes.float16)).cumsum(0).dtype == dtypes.float16
assert (Tensor([0, 1], dtype=dtypes.bfloat16)).cumsum(0).dtype == dtypes.bfloat16
assert (Tensor([0, 1], dtype=dtypes.float32)).cumsum(0).dtype == dtypes.float32
assert (Tensor([0, 1], dtype=dtypes.float64)).cumsum(0).dtype == dtypes.float64
@given(st.sampled_from(core_dtypes), st.sampled_from(core_dtypes))
@settings(deadline=None)
def test_matmul(self, dt1, dt2):
assert (Tensor([0, 1], dtype=dt1) @ Tensor([0, 1], dtype=dt2)).dtype == least_upper_dtype(dt1, dt2)
if __name__ == '__main__':
unittest.main()