mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-23 05:48:08 -05:00
* add tiny test for randomness * Tensor._device_seeds is a Tuple * no tuple, just a 2 element tensor * no more longs * fix tests, and maybe ocelot works now * NV still doesn't work. cleanup rules * test + two more rules
85 lines
2.3 KiB
Python
85 lines
2.3 KiB
Python
# basic self-contained tests of the external functionality of tinygrad
|
|
import unittest
|
|
from tinygrad import Tensor, Context, Variable, TinyJit, dtypes, Device
|
|
from tinygrad.helpers import IMAGE
|
|
|
|
class TestTiny(unittest.TestCase):
|
|
|
|
# *** basic functionality ***
|
|
|
|
def test_plus(self):
|
|
out = Tensor([1.,2,3]) + Tensor([4.,5,6])
|
|
self.assertListEqual(out.tolist(), [5.0, 7.0, 9.0])
|
|
|
|
def test_plus_big(self):
|
|
out = Tensor.ones(16).contiguous() + Tensor.ones(16).contiguous()
|
|
self.assertListEqual(out.tolist(), [2]*16)
|
|
|
|
def test_cat(self):
|
|
out = Tensor.cat(Tensor.ones(8).contiguous(), Tensor.ones(8).contiguous())
|
|
self.assertListEqual(out.tolist(), [1]*16)
|
|
|
|
def test_sum(self):
|
|
out = Tensor.ones(256).contiguous().sum()
|
|
self.assertEqual(out.item(), 256)
|
|
|
|
def test_gemm(self, N=4, out_dtype=dtypes.float):
|
|
a = Tensor.ones(N,N).contiguous()
|
|
b = Tensor.eye(N).contiguous()
|
|
self.assertListEqual((out:=a@b).flatten().tolist(), [1.0]*(N*N))
|
|
if IMAGE < 2: self.assertEqual(out.dtype, out_dtype)
|
|
|
|
# *** randomness ***
|
|
|
|
def test_random(self):
|
|
out = Tensor.rand(10)
|
|
for x in out.tolist():
|
|
self.assertGreaterEqual(x, 0.0)
|
|
self.assertLessEqual(x, 1.0)
|
|
|
|
# *** JIT (for Python speed) ***
|
|
|
|
def test_jit(self):
|
|
cnt = 0
|
|
@TinyJit
|
|
def fxn(a,b):
|
|
nonlocal cnt
|
|
cnt += 1
|
|
return a+b
|
|
fa,fb = Tensor([1.,2,3]), Tensor([4.,5,6])
|
|
for _ in range(3): fxn(fa, fb)
|
|
# function is only called twice
|
|
self.assertEqual(cnt, 2)
|
|
|
|
# *** BEAM (for Kernel speed) ***
|
|
|
|
def test_beam(self):
|
|
with Context(BEAM=1): self.test_plus()
|
|
|
|
# *** symbolic (to allow less recompilation) ***
|
|
|
|
def test_symbolic(self):
|
|
i = Variable('i', 1, 10)
|
|
for s in [2,5]:
|
|
ret = Tensor.ones(s).contiguous().reshape(i.bind(s)) + 1
|
|
self.assertListEqual(ret.reshape(s).tolist(), [2.0]*s)
|
|
|
|
def test_symbolic_reduce(self):
|
|
i = Variable('i', 1, 10)
|
|
for s in [2,5]:
|
|
ret = Tensor.ones(s).contiguous().reshape(i.bind(s)).sum()
|
|
self.assertEqual(ret.item(), s)
|
|
|
|
# *** image ***
|
|
|
|
@unittest.skipIf(Device.DEFAULT != "GPU", "image only supported on GPU")
|
|
def test_image(self):
|
|
with Context(IMAGE=2): self.test_gemm(out_dtype=dtypes.imagef((4, 1, 4)))
|
|
|
|
def test_beam_image(self):
|
|
with Context(BEAM=1): self.test_image()
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|