Files
tinygrad/extra/dist/world.py
nimlgen badc97f824 hip & cuda to gpuctypes (#2539)
* cuda with gpuctypes

* hip gpuctypes

* graphs

* rename + linter happy

* use cpu_time_execution

* no ji in build_kernel_node_params

* remove hip_wrapper

* hip fix

* no arc

* smalle changes

* no clean moduke in cudacpu
2023-12-01 09:25:27 -08:00

115 lines
4.6 KiB
Python

import ctypes
from extra import dist
from multiprocessing import shared_memory
from tinygrad.helpers import DEBUG, colored, getenv
from tinygrad.lazy import LazyBuffer
from tinygrad.runtime.lib import RawBuffer, RawBufferCopyInOut
try:
import gpuctypes.hip as hip
from tinygrad.runtime.ops_hip import RawHIPBuffer, check
except: RawHIPBuffer = None
from tinygrad.runtime.ops_disk import RawDiskBuffer
from tinygrad.jit import CacheCollector
from tinygrad.tensor import Tensor, Function
import numpy as np
# match the function signature of JITRunner so we can put it in the cache
def __send_rb(args, variables=None, wait=False, jit=False):
x, target_rank, y = args[:3]
if RawHIPBuffer and x.__class__ is RawHIPBuffer:
check(hip.hipSetDevice(x._device))
check(hip.hipDeviceSynchronize())
else:
if isinstance(x, RawBufferCopyInOut): x._copyout(np.frombuffer(y._buffer(), dtype=x.dtype.np))
else: y.fromCPU(x.toCPU())
dist.OOB.send(None, target_rank)
if DEBUG >= 2: print(f"{colored('****', 'magenta' if jit else None)} rank {getenv('RANK')} sent {x} to rank {target_rank}")
def __recv_rb(args, variables=None, wait=False, jit=False):
x, target_rank, y = args[:3]
dist.OOB.recv(target_rank)
if RawHIPBuffer and x.__class__ is RawHIPBuffer:
x._transfer(y)
elif isinstance(x, RawBuffer): x._copyin(y.toCPU())
else: x.fromCPU(y.toCPU())
if DEBUG >= 2: print(f"{colored('****', 'magenta' if jit else None)} rank {getenv('RANK')} recv {x} from rank {target_rank}")
# send a rawbuffer from out rank to the target rank
def _send_rb(x:RawBuffer, target_rank:int):
if RawHIPBuffer and x.__class__ is RawHIPBuffer:
# send ipc handle
check(hip.hipSetDevice(x._device))
check(hip.hipDeviceSynchronize())
check(hip.hipIpcGetMemHandle(ctypes.byval(handle := hip.hipIpcMemHandle_t()), x._buf))
dist.OOB.send((handle, x._device), target_rank)
# jit support
x._allocator = None # need to disconnect allocator for sent buffers
CacheCollector.add(__send_rb, [x, target_rank, None], {})
else:
# create shared memory
shm_name = (s := shared_memory.SharedMemory(create=True, size=x.size * x.dtype.itemsize)).name
s.close()
# copy the buffer into shared memory
y = RawDiskBuffer(x.size, x.dtype, device="disk:shm:"+shm_name)
# fast path when we can directly copyout
if isinstance(x, RawBufferCopyInOut): x._copyout(np.frombuffer(y._buffer(), dtype=x.dtype.np))
else: y.fromCPU(x.toCPU())
dist.OOB.send(shm_name, target_rank)
# jit support
CacheCollector.add(__send_rb, [x, target_rank, y], {})
if DEBUG >= 2: print(f"**** rank {getenv('RANK')} sent {x} to rank {target_rank}")
# receive a rawbuffer from the target rank
def _recv_rb(x:RawBuffer, target_rank:int):
if RawHIPBuffer and isinstance(x, RawHIPBuffer):
# open ipc handle
handle, y_device = dist.OOB.recv(target_rank)
check(hip.hipSetDevice(y_device))
check(hip.hipIpcOpenMemHandle(ctypes.byval(ptr := ctypes.c_void_p()), handle, 0))
# build a new buffer
y = RawHIPBuffer(x.size, x.dtype, device=str(y_device), buf=ptr, allocator=None)
x._transfer(y)
CacheCollector.add(__recv_rb, [x, target_rank, y], {})
else:
shm_name = dist.OOB.recv(target_rank)
y = RawDiskBuffer(x.size, x.dtype, device="disk:shm:"+shm_name)
# fast path when we can directly copyin
if isinstance(x, RawBuffer): x._copyin(y.toCPU())
else: x.fromCPU(y.toCPU())
# jit support
CacheCollector.add(__recv_rb, [x, target_rank, y], {})
if DEBUG >= 2: print(f"**** rank {getenv('RANK')} got {x} from rank {target_rank}")
# sends a lazybuffer from our rank to the target rank
def _send_lb(x:LazyBuffer, target_rank:int) -> None:
assert x.st.contiguous and x.realized, "sending buffer must be contiguous and realized"
_send_rb(x.realized, target_rank)
# receive a lazybuffer from the target rank
def _recv_lb(x:LazyBuffer, target_rank:int) -> LazyBuffer:
assert x.st.contiguous and x.realized, "receiving buffer must be contiguous and realized"
_recv_rb(x.realized, target_rank)
return x
class Send(Function):
def forward(self, x:LazyBuffer, target_rank:int) -> LazyBuffer:
self.target_rank, self.shape, self.dtype = target_rank, x.shape, x.dtype
_send_lb(x, target_rank)
return x
class Recv(Function):
def forward(self, x:LazyBuffer, target_rank:int) -> LazyBuffer:
self.target_rank = target_rank
return _recv_lb(x, target_rank)
def send(x:Tensor, target_rank:int) -> Tensor: return Send.apply(x.contiguous().realize(), target_rank=target_rank)
def recv(x:Tensor, target_rank:int) -> Tensor: return Recv.apply(x.contiguous().realize(), target_rank=target_rank)