mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-19 02:44:40 -05:00
* Rename in files * Move files * Moved to extra/datasets as suggested * Changes to files * Fixed stupid mistake --------- Co-authored-by: terafo <terafo@protonmail.com>
161 lines
7.2 KiB
Python
161 lines
7.2 KiB
Python
#!/usr/bin/env python3
|
|
# tinygrad implementation of https://github.com/tysam-code/hlb-CIFAR10/blob/main/main.py
|
|
# https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/
|
|
# https://siboehm.com/articles/22/CUDA-MMM
|
|
import time
|
|
import numpy as np
|
|
from extra.datasets import fetch_cifar
|
|
from tinygrad import nn
|
|
from tinygrad.state import get_parameters
|
|
from tinygrad.nn import optim
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.helpers import getenv
|
|
from tinygrad.ops import GlobalCounters
|
|
from extra.lr_scheduler import OneCycleLR
|
|
from tinygrad.jit import TinyJit
|
|
|
|
|
|
def set_seed(seed):
|
|
Tensor.manual_seed(getenv('SEED', seed)) # Deterministic
|
|
np.random.seed(getenv('SEED', seed))
|
|
|
|
num_classes = 10
|
|
|
|
class ConvGroup:
|
|
def __init__(self, channels_in, channels_out, short, se=True):
|
|
self.short, self.se = short, se and not short
|
|
self.conv = [nn.Conv2d(channels_in if i == 0 else channels_out, channels_out, kernel_size=3, padding=1, bias=False) for i in range(1 if short else 3)]
|
|
self.norm = [nn.BatchNorm2d(channels_out, track_running_stats=False, eps=1e-12, momentum=0.8) for _ in range(1 if short else 3)]
|
|
if self.se: self.se1, self.se2 = nn.Linear(channels_out, channels_out//16), nn.Linear(channels_out//16, channels_out)
|
|
|
|
def __call__(self, x):
|
|
x = self.conv[0](x).max_pool2d(2)
|
|
x = self.norm[0](x).relu()
|
|
if self.short: return x
|
|
residual = x
|
|
mult = self.se2((self.se1(residual.mean((2,3)))).relu()).sigmoid().reshape(x.shape[0], x.shape[1], 1, 1) if self.se else 1.0
|
|
x = self.norm[1](self.conv[1](x)).relu()
|
|
x = self.norm[2](self.conv[2](x) * mult).relu()
|
|
return x + residual
|
|
|
|
class SpeedyResNet:
|
|
def __init__(self):
|
|
# TODO: add whitening
|
|
self.net = [
|
|
nn.Conv2d(3, 64, kernel_size=1),
|
|
nn.BatchNorm2d(64, track_running_stats=False, eps=1e-12, momentum=0.8),
|
|
lambda x: x.relu(),
|
|
ConvGroup(64, 128, short=False),
|
|
ConvGroup(128, 256, short=True),
|
|
ConvGroup(256, 512, short=False),
|
|
lambda x: x.max((2,3)),
|
|
nn.Linear(512, num_classes, bias=False)
|
|
]
|
|
|
|
# note, pytorch just uses https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html instead of log_softmax
|
|
def __call__(self, x, training=True):
|
|
if not training and getenv('TTA', 0)==1: return ((x.sequential(self.net) * 0.5) + (x[..., ::-1].sequential(self.net) * 0.5)).log_softmax()
|
|
return x.sequential(self.net).log_softmax()
|
|
|
|
def fetch_batches(all_X, all_Y, BS, seed, is_train=False, flip_chance=0.5):
|
|
def _shuffle(all_X, all_Y):
|
|
if is_train:
|
|
ind = np.arange(all_Y.shape[0])
|
|
np.random.shuffle(ind)
|
|
all_X, all_Y = all_X[ind, ...], all_Y[ind, ...]
|
|
return all_X, all_Y
|
|
while True:
|
|
set_seed(seed)
|
|
all_X, all_Y = _shuffle(all_X, all_Y)
|
|
for batch_start in range(0, all_Y.shape[0], BS):
|
|
batch_end = min(batch_start+BS, all_Y.shape[0])
|
|
X = Tensor(all_X[batch_end-BS:batch_end]) # batch_end-BS for padding
|
|
Y = np.zeros((BS, num_classes), np.float32)
|
|
Y[range(BS),all_Y[batch_end-BS:batch_end]] = -1.0*num_classes
|
|
Y = Tensor(Y.reshape(BS, num_classes))
|
|
yield X, Y
|
|
if not is_train: break
|
|
seed += 1
|
|
|
|
def train_cifar(bs=512, eval_bs=500, steps=1000, div_factor=1e16, final_lr_ratio=0.001, max_lr=0.01, pct_start=0.0546875, momentum=0.8, wd=0.15, label_smoothing=0., mixup_alpha=0.025, seed=6):
|
|
set_seed(seed)
|
|
Tensor.training = True
|
|
|
|
BS, EVAL_BS, STEPS = getenv("BS", bs), getenv('EVAL_BS', eval_bs), getenv("STEPS", steps)
|
|
MAX_LR, PCT_START, MOMENTUM, WD = getenv("MAX_LR", max_lr), getenv('PCT_START', pct_start), getenv('MOMENTUM', momentum), getenv("WD", wd)
|
|
DIV_FACTOR, LABEL_SMOOTHING, MIXUP_ALPHA = getenv('DIV_FACTOR', div_factor), getenv('LABEL_SMOOTHING', label_smoothing), getenv('MIXUP_ALPHA', mixup_alpha)
|
|
FINAL_DIV_FACTOR = 1./(DIV_FACTOR*getenv('FINAL_LR_RATIO', final_lr_ratio))
|
|
if getenv("FAKEDATA"):
|
|
N = 2048
|
|
X_train = np.random.default_rng().standard_normal(size=(N, 3, 32, 32), dtype=np.float32)
|
|
Y_train = np.random.randint(0,10,size=(N), dtype=np.int32)
|
|
X_test, Y_test = X_train, Y_train
|
|
else:
|
|
X_train, Y_train = fetch_cifar(train=True)
|
|
X_test, Y_test = fetch_cifar(train=False)
|
|
model = SpeedyResNet()
|
|
optimizer = optim.SGD(get_parameters(model), lr=0.01, momentum=MOMENTUM, nesterov=True, weight_decay=WD)
|
|
lr_scheduler = OneCycleLR(optimizer, max_lr=MAX_LR, div_factor=DIV_FACTOR, final_div_factor=FINAL_DIV_FACTOR,
|
|
total_steps=STEPS, pct_start=PCT_START)
|
|
|
|
# JIT at every run
|
|
@TinyJit
|
|
def train_step_jitted(model, optimizer, lr_scheduler, Xr, Xl, Yr, Yl, mixup_prob):
|
|
X, Y = Xr*mixup_prob + Xl*(1-mixup_prob), Yr*mixup_prob + Yl*(1-mixup_prob)
|
|
X = Tensor.where(Tensor.rand(X.shape[0],1,1,1) < 0.5, X[..., ::-1], X) # flip augmentation
|
|
out = model(X)
|
|
loss = (1 - LABEL_SMOOTHING) * out.mul(Y).mean() + (-1 * LABEL_SMOOTHING * out.mean())
|
|
if not getenv("DISABLE_BACKWARD"):
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
return loss.realize()
|
|
|
|
@TinyJit
|
|
def eval_step_jitted(model, X, Y):
|
|
out = model(X, training=False)
|
|
loss = out.mul(Y).mean()
|
|
return out.realize(), loss.realize()
|
|
|
|
# 97 steps in 2 seconds = 20ms / step
|
|
# step is 1163.42 GOPS = 56 TFLOPS!!!, 41% of max 136
|
|
# 4 seconds for tfloat32 ~ 28 TFLOPS, 41% of max 68
|
|
# 6.4 seconds for float32 ~ 17 TFLOPS, 50% of max 34.1
|
|
# 4.7 seconds for float32 w/o channels last. 24 TFLOPS. we get 50ms then i'll be happy. only 64x off
|
|
|
|
# https://www.anandtech.com/show/16727/nvidia-announces-geforce-rtx-3080-ti-3070-ti-upgraded-cards-coming-in-june
|
|
# 136 TFLOPS is the theoretical max w float16 on 3080 Ti
|
|
best_eval = -1
|
|
i = 0
|
|
left_batcher, right_batcher = fetch_batches(X_train, Y_train, BS=BS, seed=seed, is_train=True), fetch_batches(X_train, Y_train, BS=BS, seed=seed+1, is_train=True)
|
|
while i <= STEPS:
|
|
(Xr, Yr), (Xl, Yl) = next(right_batcher), next(left_batcher)
|
|
mixup_prob = Tensor(np.random.beta(MIXUP_ALPHA, MIXUP_ALPHA, (1, )).astype(np.float32)) if MIXUP_ALPHA > 0 else Tensor.ones(Xr.shape[0], 1, 1, 1)
|
|
if i%50 == 0 and i > 1:
|
|
# batchnorm is frozen, no need for Tensor.training=False
|
|
corrects = []
|
|
losses = []
|
|
for Xt, Yt in fetch_batches(X_test, Y_test, BS=EVAL_BS, seed=seed):
|
|
out, loss = eval_step_jitted(model, Xt, Yt)
|
|
outs = out.numpy().argmax(axis=1)
|
|
correct = outs == Yt.numpy().argmin(axis=1)
|
|
losses.append(loss.numpy().tolist())
|
|
corrects.extend(correct.tolist())
|
|
acc = sum(corrects)/len(corrects)*100.0
|
|
if acc > best_eval:
|
|
best_eval = acc
|
|
print(f"eval {sum(corrects)}/{len(corrects)} {acc:.2f}%, {(sum(losses)/len(losses)):7.2f} val_loss STEP={i}")
|
|
if STEPS == 0 or i==STEPS: break
|
|
GlobalCounters.reset()
|
|
st = time.monotonic()
|
|
loss = train_step_jitted(model, optimizer, lr_scheduler, Xr, Xl, Yr, Yl, mixup_prob)
|
|
et = time.monotonic()
|
|
loss_cpu = loss.numpy()
|
|
cl = time.monotonic()
|
|
print(f"{i:3d} {(cl-st)*1000.0:7.2f} ms run, {(et-st)*1000.0:7.2f} ms python, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {optimizer.lr.numpy()[0]:.6f} LR, {GlobalCounters.mem_used/1e9:.2f} GB used, {GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS")
|
|
i += 1
|
|
|
|
if __name__ == "__main__":
|
|
train_cifar()
|