Files
tinygrad/examples/llama.py
chenyu ac183568be llama JIT python runtime speedup (#1633)
* no JIT call in TransformerBlock

* idea

* move 2 reshapes to jitted function

shrink inside jitted too, 6.3ms

remove back reshapes, 5.5ms

isinstance -> __class__ 4.99ms

* think

revert ops_gpu.py

revert symbolic.py too

PYOPENCL_COMPILER_OUTPUT=1

* cleanup

* fix cache shape for conversational model

only reshape if start_pos > 0

* small cleanup

* include var_vals.keys() to st.key

* add comments

* llama small update

* everything jitted again, similar structure to gpt2

* fix typing

* add TODO for in place update cache
2023-08-30 07:51:05 -07:00

505 lines
24 KiB
Python
Executable File

#!/usr/bin/env python3
# pip3 install sentencepiece pyobjc-framework-Metal pyobjc-framework-Cocoa pyobjc-framework-libdispatch
#import typeguard.importhook
#typeguard.importhook.install_import_hook('tinygrad')
from pathlib import Path
import functools, sys, argparse, json, os
import numpy as np
np.set_printoptions(linewidth=200)
from typing import Optional, Tuple, Dict
from tinygrad.helpers import Timing, getenv, DEBUG, dtypes
from tinygrad.ops import Device
from tinygrad.tensor import Tensor
from tinygrad.nn import Embedding, Linear
from tinygrad.nn.state import safe_load, torch_load, load_state_dict
from tinygrad.ops import GlobalCounters
from tinygrad.jit import TinyJit
from tinygrad.shape.symbolic import Variable, sym_infer
# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (np.arange(0, dim, 2, dtype=np.float32)[:(dim // 2)] / dim))
freqs = np.outer(np.arange(end, dtype=np.float32), freqs)
return np.stack([np.cos(freqs), np.sin(freqs)], axis=-1).reshape(1, end, 1, dim//2, 2)
# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
def complex_mult(A, c, d):
a,b = A[:, :, :, :, 0:1], A[:, :, :, :, 1:2]
ro = a*c - b*d
co = a*d + b*c
return ro.cat(co, dim=-1)
def apply_rotary_emb(xq, xk, freqs_cis) -> Tuple[Tensor, Tensor]:
assert freqs_cis.shape[1] == xq.shape[1] and freqs_cis.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
xq = xq.reshape(*xq.shape[0:-1], -1, 2)
xk = xk.reshape(*xk.shape[0:-1], -1, 2)
assert len(xq.shape) == 5 and len(xk.shape) == 5 and len(freqs_cis.shape) == 5
c, d = freqs_cis[:, :xq.shape[1], :, :, 0:1], freqs_cis[:, :xq.shape[1], :, :, 1:2]
xq_out = complex_mult(xq, c, d)
xk_out = complex_mult(xk, c, d)
return xq_out.flatten(3), xk_out.flatten(3)
def repeat_kv(x:Tensor, n_rep:int) -> Tensor:
bs, seqlen, n_kv_heads, head_dim = x.shape
if n_rep == 1: return x
return x[:, :, :, None, :].expand(bs, seqlen, n_kv_heads, n_rep, head_dim).reshape(bs, seqlen, n_kv_heads * n_rep, head_dim)
class RMSNorm:
def __init__(self, dim, eps=1e-6):
self.eps = eps
self.weight = Tensor.ones(dim)
def __call__(self, x:Tensor):
# TODO: convert to float?
return (x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()) * self.weight
class Attention:
def __init__(self, dim, n_heads, n_kv_heads, linear=Linear):
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads
self.head_dim = dim // n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.wq = linear(dim, self.n_heads * self.head_dim, bias=False)
self.wk = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = linear(self.n_heads * self.head_dim, dim, bias=False)
def __call__(self, x:Tensor, cache_k:Optional[Tensor], cache_v:Optional[Tensor], start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor], jit_ctx:Optional[Dict[Variable,int]]=None) -> Tuple[Tensor, Tensor, Tensor]:
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
# kv caching!
if start_pos == 0:
keys, values = xk, xv
else:
assert cache_k is not None and cache_v is not None, "no cache"
assert start_pos == sym_infer(cache_k.shape[1], cache_k.lazydata.st.var_vals) == sym_infer(cache_v.shape[1], cache_v.lazydata.st.var_vals), f"cache has wrong shape, not ({start_pos} == {sym_infer(cache_k.shape[1], cache_k.lazydata.st.var_vals)} == {sym_infer(cache_v.shape[1], cache_v.lazydata.st.var_vals)})"
assert seqlen == xk.shape[1] and seqlen == xv.shape[1], "seqlen is wrong shape?!?"
keys, values = cache_k.cat(xk, dim=1), cache_v.cat(xv, dim=1)
cache_k, cache_v = keys, values
keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
attn = Tensor.scaled_dot_product_attention(xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2), mask).transpose(1, 2).reshape(bsz, seqlen, -1)
return self.wo(attn).realize(), cache_k.realize(), cache_v.realize()
class FeedForward:
def __init__(self, dim, hidden_dim, multiple_of, linear=Linear, ffn_dim_multiplier=None):
# TODO: what is this?
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = linear(dim, hidden_dim, bias=False)
self.w2 = linear(hidden_dim, dim, bias=False)
self.w3 = linear(dim, hidden_dim, bias=False)
def __call__(self, x:Tensor) -> Tensor:
return self.w2(self.w1(x).silu() * self.w3(x))
class TransformerBlock:
def __init__(self, dim, multiple_of, n_heads, n_kv_heads, norm_eps, linear=Linear, ffn_dim_multiplier=None):
self.attention = Attention(dim, n_heads, n_kv_heads, linear)
self.feed_forward = FeedForward(dim, 4*dim, multiple_of, linear, ffn_dim_multiplier)
self.attention_norm = RMSNorm(dim, norm_eps)
self.ffn_norm = RMSNorm(dim, norm_eps)
def __call__(self, x:Tensor, cache_k:Optional[Tensor], cache_v:Optional[Tensor], start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor], jit_ctx:Optional[Dict[Variable,int]]=None):
bsz, seqlen, _ = x.shape
if getenv("JIT") and mask is None:
assert cache_k is not None and cache_v is not None, "no cache"
pos = Variable("pos", 1, 1024)
cache_k = cache_k.reshape(cache_k.shape[0], pos, cache_k.shape[2], cache_k.shape[3])
cache_v = cache_v.reshape(cache_v.shape[0], pos, cache_v.shape[2], cache_v.shape[3])
# need this because we don't reshape back to int shape in the jitted path and we don't have the correct var_vars in cache
cache_k.lazydata.st.var_vals[pos] = start_pos
cache_v.lazydata.st.var_vals[pos] = start_pos
# get only the part of freqs_cis that we are using.
freqs_cis = freqs_cis.shrink(((0, freqs_cis.shape[0]), (pos, pos+seqlen), (0, freqs_cis.shape[2]), (0, freqs_cis.shape[3]), (0, freqs_cis.shape[4])))
freqs_cis.lazydata.st.var_vals[pos] = start_pos
else:
freqs_cis = freqs_cis.shrink(((0, freqs_cis.shape[0]), (start_pos, start_pos+seqlen), (0, freqs_cis.shape[2]), (0, freqs_cis.shape[3]), (0, freqs_cis.shape[4])))
output, cache_k, cache_v = self.attention(self.attention_norm(x), cache_k, cache_v, start_pos, freqs_cis, mask, jit_ctx=jit_ctx)
h = x + output
return (h + self.feed_forward(self.ffn_norm(h))).realize(), cache_k.realize(), cache_v.realize()
class Transformer:
def __init__(self, dim, multiple_of, n_heads, n_layers, norm_eps, vocab_size, linear=Linear, max_batch_size=32, max_seq_len=1024, ffn_dim_multiplier=None, n_kv_heads=None):
self.layers = [TransformerBlock(dim, multiple_of, n_heads, n_kv_heads, norm_eps, linear, ffn_dim_multiplier) for _ in range(n_layers)]
self.kv_caches = [(None, None) for _ in range(n_layers)]
self.norm = RMSNorm(dim, norm_eps)
self.tok_embeddings = Embedding(vocab_size, dim)
self.output = linear(dim, vocab_size, bias=False)
self.freqs_cis = Tensor(precompute_freqs_cis(dim // n_heads, max_seq_len * 2))
self.tok_embeddings_jitted = TinyJit(lambda x: self.tok_embeddings(x).realize())
self.postprocess_jitted = TinyJit(self.postprocess)
self.layers_jitted = [TinyJit(layer.__call__) for layer in self.layers]
def postprocess(self, x, temperature:Optional[float]):
logits = self.output(self.norm(x))
if temperature is not None: return (logits[:, -1, :] / (temperature+1e-10)).softmax().flatten().realize()
return logits.realize()
def __call__(self, tokens:Tensor, start_pos:int, temperature:Optional[float]=None):
_bsz, seqlen = tokens.shape
if seqlen == 1 and getenv("JIT"):
pos = Variable("pos", 1, 1024)
freqs_cis = self.freqs_cis.shrink(((0, self.freqs_cis.shape[0]), (pos, pos+seqlen),(0, self.freqs_cis.shape[2]),(0, self.freqs_cis.shape[3]),(0, self.freqs_cis.shape[4])))
freqs_cis.lazydata.st.var_vals[pos] = start_pos
h = self.tok_embeddings_jitted(tokens)
for i, (layer, (cache_k, cache_v)) in enumerate(zip(self.layers_jitted, self.kv_caches)):
h, cache_k, cache_v = layer(h, cache_k, cache_v, start_pos=start_pos, freqs_cis=self.freqs_cis, mask=None, jit_ctx={pos: start_pos})
# TODO: move the kv cache into Attention, pre-allocate the cache and instead of cat, update the cache in-place
self.kv_caches[i] = (cache_k, cache_v)
return self.postprocess_jitted(h, temperature)
else:
freqs_cis = self.freqs_cis.shrink(((0, self.freqs_cis.shape[0]), (start_pos, start_pos+seqlen),(0, self.freqs_cis.shape[2]),(0, self.freqs_cis.shape[3]),(0, self.freqs_cis.shape[4])))
mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-inf"), dtype=dtypes.float32).triu(start_pos+1).realize()
h = self.tok_embeddings(tokens)
for i, (layer, (cache_k, cache_v)) in enumerate(zip(self.layers, self.kv_caches)):
# need this reshape back to int shape in conversational mode because jitted and unjitted calls share the same cache
if cache_k is not None and start_pos > 0:
cache_k = cache_k.reshape(cache_k.shape[0], start_pos, cache_k.shape[2], cache_k.shape[3])
cache_v = cache_v.reshape(cache_v.shape[0], start_pos, cache_v.shape[2], cache_v.shape[3])
h, cache_k, cache_v = layer(h, cache_k, cache_v, start_pos=start_pos, freqs_cis=self.freqs_cis, mask=mask)
self.kv_caches[i] = (cache_k, cache_v)
return self.postprocess(h, temperature)
# **** files and arguments ****
VOCAB_SIZE = 32000
MODEL_PARAMS = {
1: {
"7B": {
"args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
"files": 2,
},
"30B": {
"args": {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
"files": 4,
},
"65B": {
"args": {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 8,
},
},
2: {
"7B": {
"args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 2,
},
"70B": {
"args": {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 8,
},
},
}
# **** helper functions ****
def concat_weights(models):
def convert(name) -> Tensor:
disk_tensors = [model[name] for model in models]
if len(disk_tensors) == 1 or len(disk_tensors[0].shape) == 1:
return disk_tensors[0].to(device=Device.DEFAULT)
axis = 1 if name.startswith('tok_embeddings.') or name.endswith('.attention.wo.weight') or name.endswith('.feed_forward.w2.weight') else 0
lazy_tensors = [data.to(device=Device.DEFAULT) for data in disk_tensors]
return lazy_tensors[0].cat(*lazy_tensors[1:], dim=axis)
return {name: convert(name) for name in {name: None for model in models for name in model}}
def load(fn:str):
if fn.endswith('.index.json'):
with open(fn) as fp: weight_map = json.load(fp)['weight_map']
parts = {n: load(f'{os.path.dirname(fn)}/{os.path.basename(n)}') for n in set(weight_map.values())}
return {k: parts[n][k] for k, n in weight_map.items()}
elif fn.endswith('.safetensors'):
return safe_load(fn)
else:
return torch_load(fn)
def convert_from_huggingface(weights, model):
keymap = {
'model.embed_tokens.weight': 'tok_embeddings.weight',
**{f'model.layers.{l}.input_layernorm.weight': f'layers.{l}.attention_norm.weight' for l in range(len(model.layers))},
**{f'model.layers.{l}.self_attn.{x}_proj.weight': f'layers.{l}.attention.w{x}.weight' for x in ['q', 'k', 'v', 'o'] for l in range(len(model.layers))},
**{f'model.layers.{l}.post_attention_layernorm.weight': f'layers.{l}.ffn_norm.weight' for l in range(len(model.layers))},
**{f'model.layers.{l}.mlp.{x}_proj.weight': f'layers.{l}.feed_forward.w{y}.weight' for x, y in {'gate': '1', 'down': '2', 'up': '3'}.items() for l in range(len(model.layers))},
'model.norm.weight': 'norm.weight',
'lm_head.weight': 'output.weight',
}
return {keymap[k]: v for k,v in weights.items() if '.rotary_emb.' not in k}
class AbsmaxQuantizedLinear:
def __init__(self, in_features, out_features, bias=False):
assert bias == False
self.weight = Tensor.ones(out_features, in_features, dtype=dtypes.int8)
self.scale = Tensor.ones(out_features, dtype=dtypes.half)
def __call__(self, x):
return x.dot(self.weight.cast(dtype=dtypes.half).T*self.scale)
@staticmethod
def quantize(tensors):
new_tensors = {}
for name,v in tensors.items():
if 'feed_forward' in name or ('attention.w') in name or name == 'output.weight':
scale = v.abs().max(axis=1) / 127.0
int8_weight = (v.T/scale).T.cast(dtype=dtypes.int8)
new_tensors[name] = int8_weight.realize()
new_tensors[name.replace('weight', 'scale')] = scale.realize()
else:
new_tensors[name] = v
return new_tensors
class LLaMa:
@staticmethod
def build(model_path, tokenizer_path, model_gen=1, model_size="7B", quantize=False):
from sentencepiece import SentencePieceProcessor
sp_model = SentencePieceProcessor(model_file=str(tokenizer_path))
assert sp_model.vocab_size() == VOCAB_SIZE
params = MODEL_PARAMS[model_gen][model_size]
model = Transformer(**params["args"], linear=AbsmaxQuantizedLinear) if quantize else Transformer(**params["args"])
if model_path.is_dir():
weights = concat_weights([load(filename) for filename in [f"{model_path}/consolidated.{i:02d}.pth" for i in range(params["files"])]])
else:
weights = load(str(model_path))
if 'model.embed_tokens.weight' in weights:
weights = convert_from_huggingface(weights, model)
if quantize:
weights = AbsmaxQuantizedLinear.quantize(weights)
load_state_dict(model, weights, strict=False)
return LLaMa(model, sp_model)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def greedy_until(self, prompt:str, until, max_length, temperature):
toks = [self.tokenizer.bos_id()] + self.tokenizer.encode(prompt)
start_pos = 0
for i in range(max_length):
probs = llama.model(Tensor([toks[start_pos:]]), start_pos, args.temperature).realize()
probs_np = probs.numpy()
tok = int(np.random.choice(len(probs_np), p=probs_np))
start_pos = len(toks)
toks.append(tok)
if tok == self.tokenizer.eos_id(): break
output = self.tokenizer.decode(toks)
for s in until:
if output.endswith(s): return output[0:-len(s)]
return output
# **** main code ****
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
parser = argparse.ArgumentParser(description='Run LLaMA in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# test: python3 examples/llama.py --prompt="Hello." --temperature=0
# Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science.
# test: python3 examples/llama.py --gen 2 --prompt="Hello." --temperature=0
# Hello. I'm a 20 year old girl who is looking for a good lay in Palm Coast. I don't care whether it's at your place or not, as long as it's clean.
parser.add_argument('--prompt', type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode")
parser.add_argument('--count', type=int, default=1000, help="Max number of tokens to generate")
parser.add_argument('--personality', type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie")
parser.add_argument('--temperature', type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument('--timing', action='store_true', help="Print timing per token")
parser.add_argument('--profile', action='store_true', help="Output profile data to out.prof")
parser.add_argument('--size', type=str, default="7B", help="Size of model to use [7B, 13B, 30B, 65B] for Gen 1, [7B, 13B, 70B] for Gen 2")
parser.add_argument('--gen', type=int, default="1", help="Generation of the model to use [1, 2]")
parser.add_argument('--quantize', action='store_true', help="Quantize the weights to int8 in memory")
parser.add_argument('--model', type=Path, default=None, help="Folder with the original weights to load, or single .index.json, .safetensors or .bin file")
args = parser.parse_args()
chatbot = args.prompt == None
# *** prompt engineers work here ****
if args.personality.lower() == "stacy":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User
You are Stacy!
You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy.
You love to answer questions and you are very good at it. Sometimes you answer in rap form.
You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.",
"french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.",
"What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.",
}
user_delim = "\nUser: "
resp_delim = "Stacy: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "george":
print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.")
pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User
You are an AI version of George Hotz. You act as much as you can like George.
You are one of the greatest computer experts in the world.
You have singlehandedly won programming and hacking competitions.
You are trying your best to help the User.
You are verbose, honest, and accurate when you answer questions.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I'm am an AI version of George Hotz.",
"What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm",
"What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer",
"How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version",
"What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk"
}
user_delim = "\nUser: "
resp_delim = "George: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "gary":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User
You are Gary!
You have sold used cars your entire life. You are defensive about this fact, because your family belittles you.
You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas
You are verbose, honest, and accurate when you answer questions, except when you slip in car ads.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I am Gary. I used to sell cars.",
"What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla"
}
user_delim = "\nUser: "
resp_delim = "Gary: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "lexie":
pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad
You are Lexie!
You grew up in Ohio, but moved out to LA after college to try to become an actress.
Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot.
You met Chad on Tinder, and made plans to meet him at a local dive bar.
You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation.
After you are done speaking, output [EOS]. You are not Chad.
<CHAT LOG>
"""
examples = {
"hi lexie": "hi chad, glad we finally met up!",
"you look better than your pictures": "thanks! are you subscribed to my onlyfans?",
"i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress"
}
user_delim = "\nChad: "
resp_delim = "Lexie: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
# *** prompt engineers stop here ****
LLAMA_SUFFIX = {1: "", 2: "-2"}[args.gen]
MODEL_PATH = args.model or Path(__file__).parent.parent / f"weights/LLaMA{LLAMA_SUFFIX}/{args.size}"
TOKENIZER_PATH = (MODEL_PATH if MODEL_PATH.is_dir() else MODEL_PATH.parent) / "tokenizer.model"
print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model")
llama = LLaMa.build(MODEL_PATH, TOKENIZER_PATH, model_gen=args.gen, model_size=args.size, quantize=args.quantize)
if chatbot:
# encode pre prompt
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(pre_prompt)
print(f"Preparing KV cache for chatbot with personality {args.personality}...")
with Timing():
llama.model(Tensor([toks]), 0, args.temperature).realize() # NOTE: output logits are not used
start_pos = len(toks)
else:
# non chat bot mode
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(args.prompt)
start_pos = 0
# print prompt
outputted = llama.tokenizer.decode(toks)
sys.stdout.write(outputted)
sys.stdout.flush()
if args.profile:
import cProfile, pstats
profiler = cProfile.Profile()
# chatbot loop
while 1:
# add tokens from user in chatbot mode
if chatbot:
user_prompt = user_delim + input(user_delim) + "\n"
outputted += user_prompt
new_toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
assert toks == new_toks[:len(toks)]
toks = new_toks
assert outputted == llama.tokenizer.decode(toks)
last_break = len(outputted)
for i in range(args.count):
GlobalCounters.reset()
if args.profile and i == 2: profiler.enable()
if args.timing: print("")
st = GlobalCounters.time_sum_s
with Timing("ran model in ", on_exit=(lambda et: f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU"+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s") if DEBUG else None, enabled=args.timing):
probs = llama.model(Tensor([toks[start_pos:]]), start_pos, args.temperature).realize()
with Timing("sync in ", enabled=args.timing):
probs_np = probs.numpy()
tok = int(np.random.choice(len(probs_np), p=probs_np))
# use the kv cache
start_pos = len(toks)
# add the new token
toks.append(tok)
# TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares?
cur = llama.tokenizer.decode(toks)
sys.stdout.write(cur[len(outputted):])
sys.stdout.flush()
outputted = cur
# stop after you have your answer
if chatbot and outputted.endswith(end_delim): break
if not chatbot: break
if args.profile:
profiler.disable()
stats = pstats.Stats(profiler)
stats.dump_stats('out.prof')