Files
tinygrad/examples/benchmark_train_efficientnet.py
George Hotz b132de677d tinygrad.nn (#367)
* tinygrad.nn

* flake8

* working on pylint

* more pylint

* more pylint

* pylint passes

* networkx

* mypy can't infer that type

* junk
2022-08-18 07:41:00 -07:00

59 lines
1.8 KiB
Python

#!/usr/bin/env python3
import os
import time
from tqdm import trange
from extra.utils import get_parameters
from models.efficientnet import EfficientNet
import tinygrad.nn.optim as optim
from tinygrad.tensor import Tensor
from tinygrad.llops.ops_gpu import CL
import gc
def tensors_allocated():
return sum([isinstance(x, Tensor) for x in gc.get_objects()])
NUM = int(os.getenv("NUM", 2))
BS = int(os.getenv("BS", 8))
CNT = int(os.getenv("CNT", 10))
BACKWARD = int(os.getenv("BACKWARD", 0))
TRAINING = int(os.getenv("TRAINING", 1))
ADAM = int(os.getenv("ADAM", 0))
if __name__ == "__main__":
print(f"NUM:{NUM} BS:{BS} CNT:{CNT}")
model = EfficientNet(NUM, classes=1000, has_se=False, track_running_stats=False)
parameters = get_parameters(model)
for p in parameters: p.realize()
if ADAM: optimizer = optim.Adam(parameters, lr=0.001)
else: optimizer = optim.SGD(parameters, lr=0.001)
Tensor.training = TRAINING
Tensor.no_grad = not BACKWARD
for i in trange(CNT):
cpy = time.monotonic()
x_train = Tensor.randn(BS, 3, 224, 224, requires_grad=False).realize()
y_train = Tensor.randn(BS, 1000, requires_grad=False).realize()
st = time.monotonic()
out = model.forward(x_train)
loss = out.logsoftmax().mul(y_train).mean()
if BACKWARD:
optimizer.zero_grad()
loss.backward()
optimizer.step()
mt = time.monotonic()
loss.realize()
for p in parameters:
p.realize()
et = time.monotonic()
mem_used = CL.mem_used
loss = loss.detach().cpu().data[0]
cl = time.monotonic()
print(f"{(st-cpy)*1000.0:7.2f} ms cpy, {(cl-st)*1000.0:7.2f} ms run, {(mt-st)*1000.0:7.2f} ms build, {(et-mt)*1000.0:7.2f} ms realize, {(cl-et)*1000.0:7.2f} ms CL, {loss:7.2f} loss, {tensors_allocated():4d} tensors, {mem_used/1e9:.2f} GB used")