Files
tinygrad/test/test_train.py
George Hotz b132de677d tinygrad.nn (#367)
* tinygrad.nn

* flake8

* working on pylint

* more pylint

* more pylint

* pylint passes

* networkx

* mypy can't infer that type

* junk
2022-08-18 07:41:00 -07:00

64 lines
1.9 KiB
Python

import os
import unittest
import time
import tinygrad.nn.optim as optim
import numpy as np
from tinygrad.tensor import Device
from extra.training import train
from extra.utils import get_parameters
from models.efficientnet import EfficientNet
from models.transformer import Transformer
from models.vit import ViT
from models.resnet import ResNet18
BS = int(os.getenv("BS", "2"))
def train_one_step(model,X,Y):
params = get_parameters(model)
pcount = 0
for p in params:
pcount += np.prod(p.shape)
optimizer = optim.Adam(params, lr=0.001)
print("stepping %r with %.1fM params bs %d" % (type(model), pcount/1e6, BS))
st = time.time()
train(model, X, Y, optimizer, steps=1, BS=BS)
et = time.time()-st
print("done in %.2f ms" % (et*1000.))
@unittest.skipUnless(getattr(Device, "OPENCL", None) is None or Device.DEFAULT != Device.OPENCL, "OOM on OpenCL")
class TestTrain(unittest.TestCase):
def test_efficientnet(self):
model = EfficientNet(0)
X = np.zeros((BS,3,224,224), dtype=np.float32)
Y = np.zeros((BS), dtype=np.int32)
train_one_step(model,X,Y)
def test_vit(self):
model = ViT()
X = np.zeros((BS,3,224,224), dtype=np.float32)
Y = np.zeros((BS,), dtype=np.int32)
train_one_step(model,X,Y)
def test_transformer(self):
# this should be small GPT-2, but the param count is wrong
# (real ff_dim is 768*4)
model = Transformer(syms=10, maxlen=6, layers=12, embed_dim=768, num_heads=12, ff_dim=768//4)
X = np.zeros((BS,6), dtype=np.float32)
Y = np.zeros((BS,6), dtype=np.int32)
train_one_step(model,X,Y)
def test_resnet(self):
X = np.zeros((BS, 3, 224, 224), dtype=np.float32)
Y = np.zeros((BS), dtype=np.int32)
for resnet_v in [ResNet18]:
model = resnet_v()
model.load_from_pretrained()
train_one_step(model, X, Y)
def test_bert(self):
# TODO: write this
pass
if __name__ == '__main__':
unittest.main()