mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-10 23:48:01 -05:00
54 lines
1.6 KiB
Python
54 lines
1.6 KiB
Python
#!/usr/bin/env python
|
|
import unittest
|
|
import numpy as np
|
|
from tinygrad.nn import *
|
|
import torch
|
|
|
|
class TestNN(unittest.TestCase):
|
|
def test_batchnorm2d(self, training=False):
|
|
sz = 4
|
|
|
|
# create in tinygrad
|
|
bn = BatchNorm2D(sz, eps=1e-5, training=training, track_running_stats=training)
|
|
bn.weight = Tensor.randn(sz)
|
|
bn.bias = Tensor.randn(sz)
|
|
bn.running_mean = Tensor.randn(sz)
|
|
bn.running_var = Tensor.randn(sz)
|
|
bn.running_var.data[bn.running_var.data < 0] = 0
|
|
|
|
# create in torch
|
|
with torch.no_grad():
|
|
tbn = torch.nn.BatchNorm2d(sz).eval()
|
|
tbn.training = training
|
|
tbn.weight[:] = torch.tensor(bn.weight.data)
|
|
tbn.bias[:] = torch.tensor(bn.bias.data)
|
|
tbn.running_mean[:] = torch.tensor(bn.running_mean.data)
|
|
tbn.running_var[:] = torch.tensor(bn.running_var.data)
|
|
|
|
np.testing.assert_allclose(bn.running_mean.data, tbn.running_mean.detach().numpy(), rtol=1e-5)
|
|
np.testing.assert_allclose(bn.running_var.data, tbn.running_var.detach().numpy(), rtol=1e-5)
|
|
|
|
# trial
|
|
inn = Tensor.randn(2, sz, 3, 3)
|
|
|
|
# in tinygrad
|
|
outt = bn(inn)
|
|
|
|
# in torch
|
|
toutt = tbn(torch.tensor(inn.data))
|
|
|
|
# close
|
|
np.testing.assert_allclose(outt.data, toutt.detach().numpy(), rtol=5e-5)
|
|
|
|
np.testing.assert_allclose(bn.running_mean.data, tbn.running_mean.detach().numpy(), rtol=1e-5)
|
|
|
|
# TODO: this is failing
|
|
#np.testing.assert_allclose(bn.running_var.data, tbn.running_var.detach().numpy(), rtol=1e-5)
|
|
|
|
def test_batchnorm2d_training(self):
|
|
self.test_batchnorm2d(True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|