Files
tinygrad/test/test_nn.py
2020-12-09 03:23:04 -08:00

54 lines
1.6 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.nn import *
import torch
class TestNN(unittest.TestCase):
def test_batchnorm2d(self, training=False):
sz = 4
# create in tinygrad
bn = BatchNorm2D(sz, eps=1e-5, training=training, track_running_stats=training)
bn.weight = Tensor.randn(sz)
bn.bias = Tensor.randn(sz)
bn.running_mean = Tensor.randn(sz)
bn.running_var = Tensor.randn(sz)
bn.running_var.data[bn.running_var.data < 0] = 0
# create in torch
with torch.no_grad():
tbn = torch.nn.BatchNorm2d(sz).eval()
tbn.training = training
tbn.weight[:] = torch.tensor(bn.weight.data)
tbn.bias[:] = torch.tensor(bn.bias.data)
tbn.running_mean[:] = torch.tensor(bn.running_mean.data)
tbn.running_var[:] = torch.tensor(bn.running_var.data)
np.testing.assert_allclose(bn.running_mean.data, tbn.running_mean.detach().numpy(), rtol=1e-5)
np.testing.assert_allclose(bn.running_var.data, tbn.running_var.detach().numpy(), rtol=1e-5)
# trial
inn = Tensor.randn(2, sz, 3, 3)
# in tinygrad
outt = bn(inn)
# in torch
toutt = tbn(torch.tensor(inn.data))
# close
np.testing.assert_allclose(outt.data, toutt.detach().numpy(), rtol=5e-5)
np.testing.assert_allclose(bn.running_mean.data, tbn.running_mean.detach().numpy(), rtol=1e-5)
# TODO: this is failing
#np.testing.assert_allclose(bn.running_var.data, tbn.running_var.detach().numpy(), rtol=1e-5)
def test_batchnorm2d_training(self):
self.test_batchnorm2d(True)
if __name__ == '__main__':
unittest.main()