mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
* Update all devices to be tested
ANE, CPU and OCL all now support all tests.
However tests are not currently passing on GPU and I cannot test on CPU.
Failing GPU test are not an issue caused by this update. Tests have not
been passing due to a missing "six" required installation.
OpenCL Tests have not been run since commit: 1a1c63a08b
devices have 3 types and are handle by a new DeviceTypes enum. (The goal
is to revert to Tensor.<type>, but this current setup allows for keyword
argument defaults: `device=DeviceType.CPU`)
All references to Tensor.GPU/CPU/ANE as been converted to the
corresponding `DeviceTypes` enum.
Refactor of the conversion code to allow for any device to any device
conversion.
* Add six dependency in requirements.txt
* Resolve failure to run tests
Move six into gpu required installs. Remove six from standard
installation.
* Remove repeated data conversion
* Refactor method names
Also reduce code with .to and .to_
* Dynamic device handlers
* Refactor DeviceTypes -> Device
* Add mem copy profiling back
* test_backward_pass_diamond_model passing
* Resolve Sum issue on GPU
* Revert batchnorm2d tests
* Update README with upadated API
* ANE testing with
* Last minute line gains
89 lines
2.5 KiB
Python
89 lines
2.5 KiB
Python
import numpy as np
|
|
import torch
|
|
import unittest
|
|
from tinygrad.tensor import Tensor, GPU, Device
|
|
from tinygrad.optim import Adam, SGD, RMSprop
|
|
from extra.utils import get_parameters
|
|
from .config import ANE
|
|
|
|
x_init = np.random.randn(1,3).astype(np.float32)
|
|
W_init = np.random.randn(3,3).astype(np.float32)
|
|
m_init = np.random.randn(1,3).astype(np.float32)
|
|
|
|
def step_tinygrad(optim, kwargs={}, device=Device.CPU):
|
|
net = TinyNet()
|
|
optim = optim([net.x, net.W], **kwargs)
|
|
if device==Device.GPU: [x.gpu_() for x in get_parameters([net, optim])]
|
|
elif device==Device.ANE: [x.ane_() for x in get_parameters([net, optim])]
|
|
out = net.forward()
|
|
out.backward()
|
|
optim.step()
|
|
return net.x.cpu().data, net.W.cpu().data
|
|
|
|
def step_pytorch(optim, kwargs={}):
|
|
net = TorchNet()
|
|
optim = optim([net.x, net.W], **kwargs)
|
|
out = net.forward()
|
|
out.backward()
|
|
optim.step()
|
|
return net.x.detach().numpy(), net.W.detach().numpy()
|
|
|
|
|
|
class TinyNet():
|
|
def __init__(self):
|
|
self.x = Tensor(x_init.copy())
|
|
self.W = Tensor(W_init.copy())
|
|
self.m = Tensor(m_init.copy())
|
|
|
|
def forward(self):
|
|
out = self.x.dot(self.W).relu()
|
|
out = out.logsoftmax()
|
|
out = out.mul(self.m).add(self.m).sum()
|
|
return out
|
|
|
|
|
|
class TorchNet():
|
|
def __init__(self):
|
|
self.x = torch.tensor(x_init.copy(), requires_grad=True)
|
|
self.W = torch.tensor(W_init.copy(), requires_grad=True)
|
|
self.m = torch.tensor(m_init.copy())
|
|
|
|
def forward(self):
|
|
out = self.x.matmul(self.W).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.mul(self.m).add(self.m).sum()
|
|
return out
|
|
|
|
|
|
class TestOptim(unittest.TestCase):
|
|
device = Device.CPU
|
|
|
|
def test_adam(self):
|
|
for x,y in zip(step_tinygrad(Adam, device=self.device),
|
|
step_pytorch(torch.optim.Adam)):
|
|
np.testing.assert_allclose(x, y, atol=1e-4)
|
|
|
|
def test_sgd(self):
|
|
for x,y in zip(step_tinygrad(SGD, kwargs={'lr': 0.001}, device=self.device),
|
|
step_pytorch(torch.optim.SGD, kwargs={'lr': 0.001})):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
def test_rmsprop(self):
|
|
for x,y in zip(step_tinygrad(RMSprop, kwargs={'lr': 0.001, 'decay': 0.99}, device=self.device),
|
|
step_pytorch(torch.optim.RMSprop,
|
|
kwargs={'lr': 0.001, 'alpha': 0.99})):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
|
|
@unittest.skipUnless(GPU, "Requires GPU")
|
|
class TestOptimGPU(TestOptim):
|
|
device = Device.GPU
|
|
|
|
@unittest.skipUnless(ANE, "Requires ANE")
|
|
class TestOptimANE(TestOptim):
|
|
device = Device.ANE
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|