Files
tinygrad/test/test.py
2020-10-19 09:33:06 -07:00

47 lines
1.3 KiB
Python

import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor, Conv2D
x_init = np.random.randn(1,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init)
W = Tensor(W_init)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.logsoftmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.data, x.grad, W.grad
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_conv2d(self):
x = torch.randn((5,2,10,7))
w = torch.randn((4,2,3,3))
out = torch.nn.functional.conv2d(x,w)
ret = Conv2D.apply(Conv2D, Tensor(x.numpy()), Tensor(w.numpy()))
np.testing.assert_allclose(ret.data, out.numpy(), atol=1e-5)
if __name__ == '__main__':
unittest.main()