mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-13 16:15:19 -05:00
* wmma: refactor to remove wmma_func and create TC funcs as needed * test_linearizer: disable bf16 CUDA during emulation testing * cstyle: clean up creation of CUDA vec dtypes * extra/gemm: add option to accumulate to bfloat16 * cleanups * benchmark: add CUDA bfloat16 matmul * more cleanups
20 lines
888 B
Python
20 lines
888 B
Python
import numpy as np
|
|
from tinygrad.helpers import getenv
|
|
from tinygrad import dtypes, Tensor
|
|
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
|
|
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
|
|
N = getenv("N", 4096)
|
|
CNT = getenv("CNT", 10)
|
|
ATOL = getenv("ATOL", 1e-4)
|
|
RTOL = getenv("RTOL", 3e-2)
|
|
|
|
if __name__ == "__main__":
|
|
a, b = Tensor.rand(N, N, dtype=dtype_in).realize(), Tensor.rand(N, N, dtype=dtype_in).realize()
|
|
for i in range(CNT):
|
|
if i > 0 and getenv("RAND", 0) != 0:
|
|
a, b = Tensor.rand(N, N, dtype=dtype_in).realize(), Tensor.rand(N, N, dtype=dtype_in).realize()
|
|
c = a.matmul(b, acc_dtype=acc_dtype).realize()
|
|
comp = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32)
|
|
nc = c.numpy()
|
|
np.testing.assert_allclose(nc, comp, atol=ATOL, rtol=RTOL)
|