Files
tinygrad/examples/mlperf/dataloader.py
chenyu bf31837e6d resnet correct steps_in_val_epoch in logging (#4389)
also added random seed from system in scripts
2024-05-02 10:51:36 -04:00

255 lines
8.9 KiB
Python

import os, random, pickle, functools, itertools
from typing import List, Tuple
from pathlib import Path
import numpy as np
from PIL import Image
from tqdm import tqdm
from tinygrad import dtypes, Tensor
from tinygrad.helpers import getenv, prod, Context, round_up
from collections import deque
from multiprocessing import Queue, Process, shared_memory, connection, Lock, cpu_count, Pool
class MyQueue:
def __init__(self, multiple_readers=True, multiple_writers=True):
self._reader, self._writer = connection.Pipe(duplex=False)
self._rlock = Lock() if multiple_readers else None
self._wlock = Lock() if multiple_writers else None
def get(self):
if self._rlock: self._rlock.acquire()
ret = pickle.loads(self._reader.recv_bytes())
if self._rlock: self._rlock.release()
return ret
def put(self, obj):
if self._wlock: self._wlock.acquire()
self._writer.send_bytes(pickle.dumps(obj))
if self._wlock: self._wlock.release()
def shuffled_indices(n, seed=None):
rng = random.Random(seed)
indices = {}
for i in range(n-1, -1, -1):
j = rng.randint(0, i)
if i not in indices: indices[i] = i
if j not in indices: indices[j] = j
indices[i], indices[j] = indices[j], indices[i]
yield indices[i]
del indices[i]
def loader_process(q_in, q_out, X:Tensor, seed):
import signal
signal.signal(signal.SIGINT, lambda _, __: exit(0))
from extra.datasets.imagenet import center_crop, preprocess_train
with Context(DEBUG=0):
while (_recv := q_in.get()) is not None:
idx, fn, val = _recv
if fn is not None:
img = Image.open(fn)
img = img.convert('RGB') if img.mode != "RGB" else img
if val:
# eval: 76.08%, load in 0m7.366s (0m5.301s with simd)
# sudo apt-get install libjpeg-dev
# CC="cc -mavx2" pip install -U --force-reinstall pillow-simd
img = center_crop(img)
img = np.array(img)
else:
# reseed rng for determinism
if seed is not None:
np.random.seed(seed * 2 ** 10 + idx)
random.seed(seed * 2 ** 10 + idx)
img = preprocess_train(img)
else:
# pad zeros
img = np.zeros((224, 224, 3), dtype=np.uint8)
# broken out
#img_tensor = Tensor(img.tobytes(), device='CPU')
#storage_tensor = X[idx].contiguous().realize().lazydata.realized
#storage_tensor._copyin(img_tensor.numpy())
# faster
X[idx].contiguous().realize().lazydata.realized.as_buffer(force_zero_copy=True)[:] = img.tobytes()
# ideal
#X[idx].assign(img.tobytes()) # NOTE: this is slow!
q_out.put(idx)
q_out.put(None)
def batch_load_resnet(batch_size=64, val=False, shuffle=True, seed=None, pad_first_batch=False):
from extra.datasets.imagenet import get_train_files, get_val_files
files = get_val_files() if val else get_train_files()
from extra.datasets.imagenet import get_imagenet_categories
cir = get_imagenet_categories()
if pad_first_batch:
FIRST_BATCH_PAD = round_up(len(files), batch_size) - len(files)
else:
FIRST_BATCH_PAD = 0
file_count = FIRST_BATCH_PAD + len(files)
BATCH_COUNT = min(32, file_count // batch_size)
def _gen():
for _ in range(FIRST_BATCH_PAD): yield -1
yield from shuffled_indices(len(files), seed=seed) if shuffle else iter(range(len(files)))
gen = iter(_gen())
def enqueue_batch(num):
for idx in range(num*batch_size, (num+1)*batch_size):
fidx = next(gen)
if fidx != -1:
fn = files[fidx]
q_in.put((idx, fn, val))
Y[idx] = cir[fn.split("/")[-2]]
else:
# padding
q_in.put((idx, None, val))
Y[idx] = -1
shutdown = False
class Cookie:
def __init__(self, num): self.num = num
def __del__(self):
if not shutdown:
try: enqueue_batch(self.num)
except StopIteration: pass
gotten = [0]*BATCH_COUNT
def receive_batch():
while 1:
num = q_out.get()//batch_size
gotten[num] += 1
if gotten[num] == batch_size: break
gotten[num] = 0
return X[num*batch_size:(num+1)*batch_size], Y[num*batch_size:(num+1)*batch_size], Cookie(num)
#q_in, q_out = MyQueue(multiple_writers=False), MyQueue(multiple_readers=False)
q_in, q_out = Queue(), Queue()
sz = (batch_size*BATCH_COUNT, 224, 224, 3)
if os.path.exists("/dev/shm/resnet_X"): os.unlink("/dev/shm/resnet_X")
shm = shared_memory.SharedMemory(name="resnet_X", create=True, size=prod(sz))
procs = []
try:
# disk:shm is slower
#X = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:shm:{shm.name}")
X = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:/dev/shm/resnet_X")
Y = [None] * (batch_size*BATCH_COUNT)
for _ in range(cpu_count()):
p = Process(target=loader_process, args=(q_in, q_out, X, seed))
p.daemon = True
p.start()
procs.append(p)
for bn in range(BATCH_COUNT): enqueue_batch(bn)
# NOTE: this is batch aligned, last ones are ignored unless pad_first_batch is True
for _ in range(0, file_count//batch_size): yield receive_batch()
finally:
shutdown = True
# empty queues
for _ in procs: q_in.put(None)
q_in.close()
for _ in procs:
while q_out.get() is not None: pass
q_out.close()
# shutdown processes
for p in procs: p.join()
shm.close()
try:
shm.unlink()
except FileNotFoundError:
# happens with BENCHMARK set
pass
@functools.lru_cache(maxsize=128)
def load_bert_file(fn:str) -> List[dict]:
with open(fn, "rb") as f: data = pickle.load(f)
return data
def process_batch_bert(data: List[dict]) -> dict[str, Tensor]:
return {
"input_ids": Tensor(np.concatenate([s["input_ids"] for s in data], axis=0), dtype=dtypes.float32),
"input_mask": Tensor(np.concatenate([s["input_mask"] for s in data], axis=0), dtype=dtypes.default_float),
"segment_ids": Tensor(np.concatenate([s["segment_ids"] for s in data], axis=0), dtype=dtypes.float32),
"masked_lm_positions": Tensor(np.concatenate([s["masked_lm_positions"] for s in data], axis=0), dtype=dtypes.float32),
"masked_lm_ids": Tensor(np.concatenate([s["masked_lm_ids"] for s in data], axis=0), dtype=dtypes.float32),
"masked_lm_weights": Tensor(np.concatenate([s["masked_lm_weights"] for s in data], axis=0), dtype=dtypes.float32),
"next_sentence_labels": Tensor(np.concatenate([s["next_sentence_labels"] for s in data], axis=0), dtype=dtypes.float32),
}
def shuffle_parts(file_paths: List[str]) -> List[str]:
parts = {}
for f in file_paths:
part = Path(f).stem.split('_')[0]
if part not in parts: parts[part] = []
parts[part].append(f)
part_ids = list(parts.keys())
random.shuffle(part_ids)
shuffled_files = []
for p in part_ids:
parts[p].sort(key=lambda x: int(Path(x).stem.split('_')[1]))
shuffled_files.extend(parts[p])
return shuffled_files
def random_sample(data: List[str]):
index = random.randint(0, len(data) - 1)
selected_sample = data[index]
return selected_sample, index
def load_datasample(file_and_offset:Tuple[str, int]) -> List[dict]:
data = load_bert_file(file_and_offset[0])
return data[file_and_offset[1]]
# Reference: https://github.com/mlcommons/training/blob/1c8a098ae3e70962a4f7422c0b0bd35ae639e357/language_model/tensorflow/bert/run_pretraining.py, Line 394
def batch_load_train_bert(BS:int):
from extra.datasets.wikipedia import get_wiki_train_files
files = shuffle_parts(get_wiki_train_files())
dataset = []
for f in files:
lists = [(f, o) for o in range(int(Path(f).stem.split("_")[3].split(".")[0]))]
dataset.extend(lists)
active_set = deque(dataset[:1000])
remaining_set = deque(dataset[1000:])
while dataset:
blob = []
for _ in range(BS):
if active_set:
index = random.randint(0, len(active_set) - 1)
sample = active_set[index]
active_set.remove(sample)
blob.append(sample)
if remaining_set:
active_set.append(remaining_set.popleft())
yield process_batch_bert([load_datasample(sample) for sample in blob])
# Reference: https://github.com/mlcommons/training/blob/1c8a098ae3e70962a4f7422c0b0bd35ae639e357/language_model/tensorflow/bert/run_pretraining.py, Line 416
def batch_load_val_bert(BS:int):
from extra.datasets.wikipedia import get_wiki_val_files
files = get_wiki_val_files()
dataset = list(itertools.chain.from_iterable([load_bert_file(f) for f in files]))
idx = 0
while True:
start_idx = (idx * BS) % len(dataset)
end_idx = ((idx + 1) * BS) % len(dataset)
if start_idx < end_idx:
yield process_batch_bert(dataset[start_idx:end_idx])
else: # wrap around the end to the beginning of the dataset
yield process_batch_bert(dataset[start_idx:] + dataset[:end_idx])
idx += 1
if __name__ == "__main__":
from extra.datasets.imagenet import get_train_files, get_val_files
VAL = getenv("VAL", 1)
files = get_val_files() if VAL else get_train_files()
with tqdm(total=len(files)) as pbar:
for x,y,c in batch_load_resnet(val=VAL):
pbar.update(x.shape[0])