Files
tinygrad/test/test_search.py
qazal 28bf8d86d8 test_linearizer with multi output ASTs (#5115)
* ast is tuple

* run test_phi_simplification

* update reason

* more tc

* beam

* a few more

* use test_opt directly
2024-06-23 15:41:24 +03:00

102 lines
7.3 KiB
Python

import unittest
from tinygrad.codegen.kernel import Opt, OptOps
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.engine.schedule import create_schedule
from tinygrad.engine.search import time_linearizer, bufs_from_lin, actions, beam_search
from tinygrad.device import Device, Buffer
from tinygrad.ops import LazyOp, LoadOps, BufferOps, ReduceOps, BinaryOps, MemBuffer, ConstBuffer
from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes
from tinygrad.helpers import Context, GlobalCounters
from tinygrad.engine.realize import capturing
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View
class TestTimeLinearizer(unittest.TestCase):
def test_reasonable_time(self):
si = [i for i in create_schedule([Tensor([1,2,3,4]).add(1).lazydata]) if i.ast[0].op not in LoadOps][0]
out = Buffer(Device.DEFAULT, si.outputs[0].size, si.outputs[0].dtype).allocate()
memops = {x.arg.idx:x.arg.st.real_size() for x in si.ast[0].lazyops if x.op is BufferOps.LOAD}
rawbufs = [out] + [Buffer(Device.DEFAULT, memops[i], x.dtype).allocate() for i,x in enumerate(si.inputs, start=len(si.outputs))]
tm = time_linearizer(Linearizer(*si.ast), rawbufs, allow_test_size=False, cnt=10, disable_cache=True)
assert tm > 0 and tm != float('inf')
def test_bufs_from_lin(self):
si = [i for i in create_schedule([Tensor([1,2,3,4]).add(1).lazydata]) if i.ast[0].op not in LoadOps][0]
rawbufs = bufs_from_lin(lin:=Linearizer(*si.ast))
assert len(rawbufs) == len(lin.membufs)
assert all(r is not None for r in rawbufs)
assert all(isinstance(r, Buffer) for r in rawbufs)
assert all(r.size > 0 for r in rawbufs)
def test_kernel_count(self):
"""
Ensure that the kernel count is not incremented by time_linearizer when clearing l2
"""
# ast of Tensor.zeros(16).contiguous().realize()
ast = LazyOp(op=BufferOps.STORE, src=(LazyOp(op=BufferOps.CONST, src=(), arg=ConstBuffer(val=0.0, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(16,), strides=(0,), offset=0, mask=None, contiguous=False),)))),), arg=MemBuffer(idx=0, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(16,), strides=(1,), offset=0, mask=None, contiguous=True),)))) # noqa: E501
lin = Linearizer(ast)
bufs = bufs_from_lin(lin)
kernel_count = GlobalCounters.kernel_count
time_linearizer(lin, bufs, allow_test_size=False, cnt=2, disable_cache=True, clear_l2=True)
assert GlobalCounters.kernel_count == kernel_count, "kernel count was incremented by time_linearizer"
class TestBEAM(unittest.TestCase):
def test_dynamic_beam(self):
# TODO: make this infra globally usable
class Capture:
def __init__(self): self.captured = []
def add(self, x): self.captured.append(x)
capturing.append(Capture())
kernel_count = GlobalCounters.kernel_count
with Context(BEAM=1): Tensor.zeros(16).contiguous().realize()
assert GlobalCounters.kernel_count == kernel_count + 1
k_beam_1 = capturing[0].captured
capturing.clear()
capturing.append(Capture())
kernel_count = GlobalCounters.kernel_count
with Context(BEAM=0): Tensor.zeros(16).contiguous().realize()
assert GlobalCounters.kernel_count == kernel_count + 1
k_beam_0 = capturing[0].captured
capturing.clear()
self.assertNotEqual(k_beam_0[-1].prg.p.src, k_beam_1[-1].prg.p.src)
def test_get_linearizer_actions(self):
from test.test_linearizer import helper_realized_ast
a = Tensor.rand(4, 3)
b = Tensor.rand(3)
realized_ast, _ = helper_realized_ast(a @ b)
from tinygrad.engine.search import get_linearizer_actions
lins = get_linearizer_actions(Linearizer(*realized_ast), False).values()
# ensure amt=0 are not duplicated
if Opt(OptOps.UPCAST, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.UPCAST, axis=0, amt=4)]) == 0, "did not de-dup UPCAST"
if Opt(OptOps.LOCAL, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.LOCAL, axis=0, amt=4)]) == 0, "did not de-dup LOCAL"
if Opt(OptOps.UNROLL, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.UNROLL, axis=0, amt=3)]) == 0, "did not de-dup UNROLL"
if Opt(OptOps.GROUP, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.GROUP, axis=0, amt=3)]) == 0, "did not de-dup GROUP"
if Opt(OptOps.GROUPTOP, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.GROUPTOP, axis=0, amt=3)]) == 0, "did not de-dup GROUPTOP"
def test_filter_global_buffer(self):
# taken from https://github.com/tinygrad/tinygrad/issues/4612
ast = LazyOp(op=BufferOps.STORE, src=(LazyOp(op=ReduceOps.MAX, src=(LazyOp(op=BinaryOps.MUL, src=(LazyOp(op=BinaryOps.ADD, src=(LazyOp(op=BinaryOps.ADD, src=(LazyOp(op=BinaryOps.ADD, src=(LazyOp(op=BinaryOps.ADD, src=(LazyOp(op=BinaryOps.ADD, src=(LazyOp(op=BufferOps.LOAD, src=(), arg=MemBuffer(idx=1, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=0, mask=((0, 64128),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))))), LazyOp(op=BufferOps.LOAD, src=(), arg=MemBuffer(idx=2, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-64128, mask=((64128, 128256),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False)))))), arg=None), LazyOp(op=BufferOps.LOAD, src=(), arg=MemBuffer(idx=3, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-128256, mask=((128256, 192384),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False)))))), arg=None), LazyOp(op=BufferOps.LOAD, src=(), arg=MemBuffer(idx=4, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-192384, mask=((192384, 256512),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False)))))), arg=None), LazyOp(op=BufferOps.LOAD, src=(), arg=MemBuffer(idx=5, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-256512, mask=((256512, 320640),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False)))))), arg=None), LazyOp(op=BufferOps.LOAD, src=(), arg=MemBuffer(idx=6, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-320640, mask=((320640, 384768),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False)))))), arg=None), LazyOp(op=BufferOps.CONST, src=(), arg=ConstBuffer(val=1.4285714285714286, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(1, 501, 256), strides=(0, 0, 0), offset=0, mask=None, contiguous=False),))))), arg=None),), arg=(1,)),), arg=MemBuffer(idx=0, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(1, 1, 256), strides=(0, 0, 1), offset=0, mask=None, contiguous=True),)))) # noqa: E501
lin = Linearizer(ast)
bufs = bufs_from_lin(lin)
best_lin = beam_search(lin, bufs, 3)
assert best_lin
# need disable_cache to trigger.
tm = time_linearizer(best_lin, bufs, allow_test_size=False, cnt=2, disable_cache=True)
assert tm
if __name__ == '__main__':
unittest.main()