Files
tinygrad/test/test_winograd.py
George Hotz 07b350a8f4 new uops is an actual graph (#4560)
* new uops is an actual graph

* it's way slower

* simpler

* fix define acc

* render_loop unique

* ops test pass

* add pattern matcher back, there's bugs

* rewrite

* use priority queue

* recursive children

* fix tests

* fix tests with SINK

* fix abstractions

* fix assembly

* simpler

* link define_acc

* fix DEFINE_ACC placement

* type verify

* full cmp

* fix cmp

* ACCESS_ACC

* insert DEFINE_ACC

* fix PHI

* recursive rewrite

* fix many tests

* sum collapse

* more patterns

* correct change

* fold arange

* fix that lin test

* space

* big folding rule works

* close

* has more maxes, meh

* cached node replace

* set changed

* simplest folding yet

* works

* works

* DIV

* all tests pass

* del

* fuzz linearizer fails

* sum_collapse

* test depth 2 cf

* fix lin test 14

* fix clang depth

* disable that

* failure 14 is fixed

* fix ptx

* failure 27 is fixed

* fix llama

* run_cnt

* Revert "Optimize PTX gated loads index calculation (#4304)"

This reverts commit d97d5a7689.

* fix uops loop

* fix ptx bugs

* add barrier

* print

* mem_type in ptx direct

* bypass tests that fail in CI but pass locally

* ptx remove ptr_ar

* more ptx passing

* fix ptx tests

* assert compile support

* remove  model inference benchmark from red
2024-05-17 18:00:18 -07:00

72 lines
2.5 KiB
Python

import unittest
from tinygrad import Tensor, GlobalCounters
from tinygrad.helpers import Timing, CI, Profiling, WINO, DEBUG
from tinygrad.ops import LoadOps
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.engine.schedule import create_schedule
class TestWinograd(unittest.TestCase):
def setUp(self):
self.old = WINO.value
WINO.value = 1
def tearDown(self):
WINO.value = self.old
def test_speed(self):
x = Tensor.empty(1,4,9,9)
w = Tensor.empty(4,4,3,3)
with Timing("running conv: "):
out = Tensor.conv2d(x, w)
with Timing("scheduling: "):
sched = create_schedule([out.lazydata])
for i,s in enumerate(sched):
if s.ast[0].op in LoadOps: continue
ops = [out.lazyops for out in s.ast]
with Timing(f"linearize {i} with {len(ops):4d} ops: "):
l = Linearizer(*s.ast)
l.hand_coded_optimizations()
l.linearize()
assert len(l.sts) <= 256 # just the current value to prevent regression
if DEBUG >= 2: print(f"{len(l.sts):4d} shapetrackers with max {max(len(x.views) for x in l.sts)} views")
for st in l.sts:
assert len(st.views) <= 2, "too many views in winograd"
if DEBUG >= 3:
print(f"{len(st.views):3d} views")
for v in st.views: print(v)
def test_profile(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
with Profiling(enabled=not CI, sort='time'):
out = Tensor.conv2d(x,w).realize()
out.numpy()
def test_four_kernels(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
GlobalCounters.reset()
out = Tensor.conv2d(x,w).realize()
assert GlobalCounters.kernel_count == 4
out.numpy()
def test_counters(self):
IC, OC, X, Y = 4,4,9,9
#OC, IC, X, Y = 512, 256, 8, 8
x,w = Tensor.rand(1,IC,Y,X).realize(), Tensor.rand(OC,IC,3,3).realize()
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_wino, mem_wino = GlobalCounters.global_ops, GlobalCounters.global_mem
WINO.value = 0
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_normal, mem_normal = GlobalCounters.global_ops, GlobalCounters.global_mem
ops_ratio, mem_ratio = ops_wino/ops_normal, mem_wino/mem_normal
print(f"ops: normal {ops_normal:9d} wino {ops_wino:9d} ratio {ops_ratio:.2f}")
print(f"mem: normal {mem_normal:9d} wino {mem_wino:9d} ratio {mem_ratio:.2f}")
assert ops_ratio < 2 and mem_ratio < 10
if __name__ == '__main__':
unittest.main(verbosity=2)