mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-10 07:28:15 -05:00
* api cleanups, BCE losses * valuenet * fixup examples * learning okay * add valuenet runner * net improvements * net improvements * 40% win rate
86 lines
3.4 KiB
Python
86 lines
3.4 KiB
Python
from typing import List
|
|
from models.resnet import ResNet50
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.ops import LoadOps, Device, Compiled
|
|
from tinygrad.codegen.linearizer import Linearizer
|
|
from tinygrad.codegen.search import bufs_from_lin, time_linearizer, get_linearizer_actions
|
|
from tinygrad.helpers import ansilen, DEBUG, getenv
|
|
from tinygrad.graph import print_tree
|
|
from tinygrad.lazy import vars_from_ast
|
|
from tinygrad.shape.symbolic import sym_infer
|
|
|
|
import shelve
|
|
global_db = shelve.open("/tmp/greedy_cache")
|
|
|
|
if __name__ == "__main__":
|
|
mdl = ResNet50()
|
|
seen = set()
|
|
|
|
# the device we are optimizing for
|
|
device: Compiled = Device[Device.DEFAULT]
|
|
print(f"optimizing for {Device.DEFAULT}")
|
|
|
|
# first model run to init the weights, they are saved in seen
|
|
mdl(Tensor.empty(64, 3, 224, 224)).lazydata.schedule(seen)
|
|
|
|
# run model again to get only what changes, these are the kernels of the model
|
|
x = Tensor.empty(64, 3, 224, 224)
|
|
out = mdl(x)
|
|
sched = out.lazydata.schedule(seen)
|
|
sched = [x for x in sched if x.ast.op not in LoadOps]
|
|
|
|
# work with the schedule
|
|
total_tm = 0
|
|
running_gflops = 0
|
|
for i,si in enumerate(sched):
|
|
if DEBUG >= 2: print_tree(si.ast)
|
|
|
|
# create output/input buffers (NOTE: bufs_from_lin is slower, so we don't use it. TODO: fix)
|
|
rawbufs = [device.buffer(si.out.st.size(), si.out.dtype)] + [device.buffer(x.st.size(), x.dtype) for x in si.inputs]
|
|
#rawbufs = bufs_from_lin(lin)
|
|
|
|
# "linearize" the op into uops in different ways
|
|
lins:List[Linearizer] = []
|
|
|
|
# always try hand coded opt
|
|
lin = Linearizer(si.ast, device.linearizer_opts)
|
|
lin.hand_coded_optimizations()
|
|
lins.append(lin)
|
|
|
|
# maybe try tensor cores
|
|
lin = Linearizer(si.ast, device.linearizer_opts)
|
|
if lin.apply_tensor_cores():
|
|
lins.append(lin)
|
|
|
|
# try a greedy search
|
|
if getenv("GREEDY"):
|
|
lin = Linearizer(si.ast, device.linearizer_opts)
|
|
if str(lin.ast) in global_db:
|
|
for ao in global_db[str(lin.ast)]:
|
|
lin.apply_opt(ao)
|
|
else:
|
|
while 1:
|
|
acted_lins = get_linearizer_actions(lin)
|
|
timed_lins = {k:time_linearizer(v, rawbufs) for k,v in acted_lins.items()}
|
|
opts = sorted(timed_lins.items(), key=lambda x: x[1])
|
|
if opts[0][0] == 0: break # we are done
|
|
lin = acted_lins[opts[0][0]]
|
|
if DEBUG >= 1: print(f"{opts[0][1]*1e3:10.2f} ms from {len(opts):3d} actions", lin.colored_shape())
|
|
global_db[str(lin.ast)] = lin.applied_opts
|
|
lins.append(lin)
|
|
|
|
# benchmark the programs
|
|
choices = []
|
|
for lin in lins:
|
|
tm = time_linearizer(lin, rawbufs, allow_test_size=False, cnt=10, should_copy=False)
|
|
gflops = sym_infer(lin.info.flops, {k:k.min for k in vars_from_ast(lin.ast)})*1e-9/tm
|
|
choices.append((tm, gflops, lin))
|
|
|
|
# print all kernels
|
|
if DEBUG >= 1: print(f" kernel {i:2d} {lin.display_name+' '*(37-ansilen(lin.display_name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS")
|
|
tm, gflops, lin = sorted(choices, key=lambda x: x[0])[0]
|
|
print(f"*** {total_tm*1000:7.2f} ms : kernel {i:2d} {lin.display_name+' '*(37-ansilen(lin.display_name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS")
|
|
total_tm += tm
|
|
running_gflops += gflops * tm
|
|
print(f"******* total {total_tm*1000:.2f} ms, {running_gflops/total_tm:6.0f} GFLOPS")
|