Files
tinygrad/examples/benchmark_onnx.py
geohotstan 057c70b05f add onnx_helpers to extra and add ort validate to benchmark_onnx (#8890)
* start

* log severity

* only change this

* change abstraction so it's more usable for huggingface

---------

Co-authored-by: chenyu <chenyu@fastmail.com>
2025-02-04 16:36:01 -05:00

36 lines
1.2 KiB
Python

import sys, onnx, time
from tinygrad import TinyJit, Device, GlobalCounters, fetch, getenv
from extra.onnx import OnnxRunner
from extra.onnx_helpers import get_example_inputs, validate
def load_onnx_model(onnx_file):
onnx_model = onnx.load(onnx_file)
run_onnx = OnnxRunner(onnx_model)
run_onnx_jit = TinyJit(lambda **kwargs: next(iter(run_onnx({k:v.to(Device.DEFAULT) for k,v in kwargs.items()}).values())), prune=True)
return run_onnx_jit, run_onnx.graph_inputs
if __name__ == "__main__":
onnx_file = fetch(sys.argv[1])
run_onnx_jit, input_specs = load_onnx_model(onnx_file)
print("loaded model")
for i in range(3):
new_inputs = get_example_inputs(input_specs)
GlobalCounters.reset()
print(f"run {i}")
run_onnx_jit(**new_inputs)
# run 20 times
for _ in range(20):
new_inputs = get_example_inputs(input_specs)
GlobalCounters.reset()
st = time.perf_counter()
out = run_onnx_jit(**new_inputs)
mt = time.perf_counter()
val = out.numpy()
et = time.perf_counter()
print(f"enqueue {(mt-st)*1e3:6.2f} ms -- total run {(et-st)*1e3:6.2f} ms")
if getenv("ORT"):
validate(onnx_file, new_inputs, rtol=1e-3, atol=1e-3)
print("model validated")