mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-23 05:48:08 -05:00
* models matrix * fix typo and install gpu deps * install llvm deps if needed * fix * testops with cuda * remove pip cache since not work * cuda env * install cuda deps * maybe it will work now * i can't read * all tests in matrix * trim down more * opencl stuff in matrix * opencl pip cache * test split * change cuda test exclusion * test * fix cuda maybe * add models * add more n=auto * third thing * fix bug * cache pip more * change name * update tests * try again cause why not * balance * try again... * try apt cache for cuda * try on gpu: * try cuda again * update packages step * replace libz-dev with zlib1g-dev * only cache cuda * why error * fix gpuocelot bug * apt cache err * apt cache to slow? * opt and image in single runner * add a couple n=autos * remove test matrix * try cuda apt cache again * libz-dev -> zlib1g-dev * remove -s since not supported by xdist * the cache takes too long and doesn't work * combine webgpu and metal tests * combine imagenet to c and cpu tests * torch tests with linters * torch back by itself * small windows clang test with torch tests * fix a goofy windows bug * im dumb * bro * clang with linters * fix pylint error * linter not work on windows * try with clang again * clang and imagenet? * install deps * fix * fix quote * clang by itself (windows too slow) * env vars for imagenet * cache pip for metal and webgpu tests * try torch with metal and webgpu * doesn't work, too long * remove -v * try -n=logical * don't use logical * revert accidental thing * remove some prints unless CI * fix print unless CI * ignore speed tests for slow tests * clang windows in matrix (ubuntu being tested in imagenet->c test) * try manual pip cache * fix windows pip cache path * all manual pip cache * fix pip cache dir for macos * print_ci function in helpers * CI as variable, no print_ci * missed one * cuda tests with docker image * remove setup-python action for cuda * python->python3? * remove -s -v * try fix pip cache * maybe fix * try to fix pip cache * is this the path? * maybe cache pip * try again * create wheels dir * ? * cuda pip deps in dockerfile * disable pip cache for clang * image from ghcr instead of docker hub * why is clang like this * fast deps * try use different caches * remove the fast thing * try with lighter image * remove setup python for cuda * small docker and cuda fast deps * ignore a few more tests * cool docker thing (maybe) * oops * quotes * fix docker command * fix bug * ignore train efficientnet test * remove dockerfile (docker stuff takes too long) * remove docker stuff and normal cuda * oops * ignore the tests for cuda * does this work * ignore test_train on slow backends * add space * llvm ignore same tests as cuda * nvm * ignore lr scheduler tests * get some stats * fix ignore bug * remove extra ' * remove and * ignore test for llvm * change ignored tests and durationon all backends * fix * and -> or * ignore some more cuda tests * finally? * does this fix it * remove durations=0 * add some more tests to llvm * make last pytest more readable * fix * don't train efficientnet on cpu * try w/out pip cache * pip cache seems to be generally better * pytest file markers * try apt fast for cuda * use quick install for apt-fast * apt-fast not worth * apt-get to apt * fix typo * suppress warnings * register markers * disable debug on fuzz tests * change marker names * apt update and apt install in one command * update marker names in test.yml * webgpu pytest marker
75 lines
2.0 KiB
Python
75 lines
2.0 KiB
Python
import unittest
|
|
import numpy as np
|
|
from tinygrad.lazy import Device
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.helpers import getenv, CI
|
|
|
|
def multidevice_test(fxn):
|
|
exclude_devices = getenv("EXCLUDE_DEVICES", "").split(",")
|
|
def ret(self):
|
|
for device in Device._buffers:
|
|
if device in ["DISK", "FAKE"]: continue
|
|
if not CI: print(device)
|
|
if device in exclude_devices:
|
|
if not CI: print(f"WARNING: {device} test is excluded")
|
|
continue
|
|
with self.subTest(device=device):
|
|
try:
|
|
Device[device]
|
|
except Exception:
|
|
if not CI: print(f"WARNING: {device} test isn't running")
|
|
continue
|
|
fxn(self, device)
|
|
return ret
|
|
|
|
class TestExample(unittest.TestCase):
|
|
@multidevice_test
|
|
def test_convert_to_cpu(self, device):
|
|
a = Tensor([[1,2],[3,4]], device=device)
|
|
assert a.numpy().shape == (2,2)
|
|
b = a.cpu()
|
|
assert b.numpy().shape == (2,2)
|
|
|
|
@multidevice_test
|
|
def test_2_plus_3(self, device):
|
|
a = Tensor([2], device=device)
|
|
b = Tensor([3], device=device)
|
|
result = a + b
|
|
print(f"{a.numpy()} + {b.numpy()} = {result.numpy()}")
|
|
assert result.numpy()[0] == 5.
|
|
|
|
@multidevice_test
|
|
def test_example_readme(self, device):
|
|
x = Tensor.eye(3, device=device, requires_grad=True)
|
|
y = Tensor([[2.0,0,-2.0]], device=device, requires_grad=True)
|
|
z = y.matmul(x).sum()
|
|
z.backward()
|
|
|
|
x.grad.numpy() # dz/dx
|
|
y.grad.numpy() # dz/dy
|
|
|
|
assert x.grad.device == device
|
|
assert y.grad.device == device
|
|
|
|
@multidevice_test
|
|
def test_example_matmul(self, device):
|
|
try:
|
|
Device[device]
|
|
except Exception:
|
|
print(f"WARNING: {device} test isn't running")
|
|
return
|
|
|
|
x = Tensor.eye(64, device=device, requires_grad=True)
|
|
y = Tensor.eye(64, device=device, requires_grad=True)
|
|
z = y.matmul(x).sum()
|
|
z.backward()
|
|
|
|
x.grad.numpy() # dz/dx
|
|
y.grad.numpy() # dz/dy
|
|
|
|
assert x.grad.device == device
|
|
assert y.grad.device == device
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|