Files
tinygrad/test/unit/test_example.py
cheeetoo a0965ee198 CI < 5 minutes (#1252)
* models matrix

* fix typo and install gpu deps

* install llvm deps if needed

* fix

* testops with cuda

* remove pip cache since not work

* cuda env

* install cuda deps

* maybe it will work now

* i can't read

* all tests in matrix

* trim down more

* opencl stuff in matrix

* opencl pip cache

* test split

* change cuda test exclusion

* test

* fix cuda maybe

* add models

* add more n=auto

* third thing

* fix bug

* cache pip more

* change name

* update tests

* try again cause why not

* balance

* try again...

* try apt cache for cuda

* try on gpu:

* try cuda again

* update packages step

* replace libz-dev with zlib1g-dev

* only cache cuda

* why error

* fix gpuocelot bug

* apt cache err

* apt cache to slow?

* opt and image in single runner

* add a couple n=autos

* remove test matrix

* try cuda apt cache again

* libz-dev -> zlib1g-dev

* remove -s since not supported by xdist

* the cache takes too long and doesn't work

* combine webgpu and metal tests

* combine imagenet to c and cpu tests

* torch tests with linters

* torch back by itself

* small windows clang test with torch tests

* fix a goofy windows bug

* im dumb

* bro

* clang with linters

* fix pylint error

* linter not work on windows

* try with clang again

* clang and imagenet?

* install deps

* fix

* fix quote

* clang by itself (windows too slow)

* env vars for imagenet

* cache pip for metal and webgpu tests

* try torch with metal and webgpu

* doesn't work, too long

* remove -v

* try -n=logical

* don't use logical

* revert accidental thing

* remove some prints unless CI

* fix print unless CI

* ignore speed tests for slow tests

* clang windows in matrix (ubuntu being tested in imagenet->c test)

* try manual pip cache

* fix windows pip cache path

* all manual pip cache

* fix pip cache dir for macos

* print_ci function in helpers

* CI as variable, no print_ci

* missed one

* cuda tests with docker image

* remove setup-python action for cuda

* python->python3?

* remove -s -v

* try fix pip cache

* maybe fix

* try to fix pip cache

* is this the path?

* maybe cache pip

* try again

* create wheels dir

* ?

* cuda pip deps in dockerfile

* disable pip cache for clang

* image from ghcr instead of docker hub

* why is clang like this

* fast deps

* try use different caches

* remove the fast thing

* try with lighter image

* remove setup python for cuda

* small docker and cuda fast deps

* ignore a few more tests

* cool docker thing (maybe)

* oops

* quotes

* fix docker command

* fix bug

* ignore train efficientnet test

* remove dockerfile (docker stuff takes too long)

* remove docker stuff and normal cuda

* oops

* ignore the tests for cuda

* does this work

* ignore test_train on slow backends

* add space

* llvm ignore same tests as cuda

* nvm

* ignore lr scheduler tests

* get some stats

* fix ignore bug

* remove extra '

* remove and

* ignore test for llvm

* change ignored tests and durationon all backends

* fix

* and -> or

* ignore some more cuda tests

* finally?

* does this fix it

* remove durations=0

* add some more tests to llvm

* make last pytest more readable

* fix

* don't train efficientnet on cpu

* try w/out pip cache

* pip cache seems to be generally better

* pytest file markers

* try apt fast for cuda

* use quick install for apt-fast

* apt-fast not worth

* apt-get to apt

* fix typo

* suppress warnings

* register markers

* disable debug on fuzz tests

* change marker names

* apt update and apt install in one command

* update marker names in test.yml

* webgpu pytest marker
2023-07-23 13:00:56 -07:00

75 lines
2.0 KiB
Python

import unittest
import numpy as np
from tinygrad.lazy import Device
from tinygrad.tensor import Tensor
from tinygrad.helpers import getenv, CI
def multidevice_test(fxn):
exclude_devices = getenv("EXCLUDE_DEVICES", "").split(",")
def ret(self):
for device in Device._buffers:
if device in ["DISK", "FAKE"]: continue
if not CI: print(device)
if device in exclude_devices:
if not CI: print(f"WARNING: {device} test is excluded")
continue
with self.subTest(device=device):
try:
Device[device]
except Exception:
if not CI: print(f"WARNING: {device} test isn't running")
continue
fxn(self, device)
return ret
class TestExample(unittest.TestCase):
@multidevice_test
def test_convert_to_cpu(self, device):
a = Tensor([[1,2],[3,4]], device=device)
assert a.numpy().shape == (2,2)
b = a.cpu()
assert b.numpy().shape == (2,2)
@multidevice_test
def test_2_plus_3(self, device):
a = Tensor([2], device=device)
b = Tensor([3], device=device)
result = a + b
print(f"{a.numpy()} + {b.numpy()} = {result.numpy()}")
assert result.numpy()[0] == 5.
@multidevice_test
def test_example_readme(self, device):
x = Tensor.eye(3, device=device, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], device=device, requires_grad=True)
z = y.matmul(x).sum()
z.backward()
x.grad.numpy() # dz/dx
y.grad.numpy() # dz/dy
assert x.grad.device == device
assert y.grad.device == device
@multidevice_test
def test_example_matmul(self, device):
try:
Device[device]
except Exception:
print(f"WARNING: {device} test isn't running")
return
x = Tensor.eye(64, device=device, requires_grad=True)
y = Tensor.eye(64, device=device, requires_grad=True)
z = y.matmul(x).sum()
z.backward()
x.grad.numpy() # dz/dx
y.grad.numpy() # dz/dy
assert x.grad.device == device
assert y.grad.device == device
if __name__ == '__main__':
unittest.main()