Files
tinygrad/examples/gpt2.py
George Hotz 96c12fdeab multibatch gpt2 (#2432)
* support multibatch gpt-2

* multi output

* no default JIT in CI
2023-11-24 18:10:10 -08:00

175 lines
8.2 KiB
Python

#!/usr/bin/env python3
import argparse
from tqdm import trange
import numpy as np
from tinygrad.ops import Device
from typing import Optional
from tinygrad.tensor import Tensor
from tinygrad.nn import Embedding, Linear, LayerNorm
from tinygrad.shape.symbolic import Variable
from tinygrad.jit import TinyJit
import tiktoken
from tinygrad.nn.state import torch_load, load_state_dict
from tinygrad.helpers import GlobalCounters, Timing, DEBUG, getenv, fetch, colored, CI
MAX_CONTEXT = getenv("MAX_CONTEXT", 128)
class Attention:
def __init__(self, dim, n_heads):
self.c_attn = Linear(dim, 3*dim, bias=True)
self.c_proj = Linear(dim, dim, bias=True)
self.n_heads = n_heads
self.dim = dim
self.head_dim = dim // n_heads
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]) -> Tensor:
if mask is not None:
# no symbolic shape qkv when consuming prompts
start_pos = start_pos.val
xqkv = self.c_attn(x)
xq, xk, xv = [xqkv.shrink((None, None, (i*self.dim, (i+1)*self.dim))).reshape(xqkv.shape[0], xqkv.shape[1], self.n_heads, self.head_dim) for i in range(3)]
bsz, seqlen, n_heads, head_dim = xq.shape
# create kv cache
if not hasattr(self, "cache_k"):
self.cache_k, self.cache_v = Tensor.zeros(bsz, MAX_CONTEXT, self.n_heads, self.head_dim), Tensor.zeros(bsz, MAX_CONTEXT, self.n_heads, self.head_dim)
keys = self.cache_k.shrink((None, (0, start_pos), None, None)).cat(xk, dim=1)
values = self.cache_v.shrink((None, (0, start_pos), None, None)).cat(xv, dim=1)
# update the cache
self.cache_k.assign(keys.pad((None,(0,MAX_CONTEXT-start_pos-seqlen),None,None)).contiguous()).realize()
self.cache_v.assign(values.pad((None,(0,MAX_CONTEXT-start_pos-seqlen),None,None)).contiguous()).realize()
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
return self.c_proj(xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2).reshape(bsz, seqlen, -1))
class FeedForward:
def __init__(self, dim, hidden_dim):
self.c_fc = Linear(dim, hidden_dim, bias=True)
self.c_proj = Linear(hidden_dim, dim, bias=True)
def __call__(self, x:Tensor) -> Tensor:
return self.c_proj(self.c_fc(x).gelu())
class TransformerBlock:
def __init__(self, dim, n_heads, norm_eps):
self.attn = Attention(dim, n_heads)
self.mlp = FeedForward(dim, 4*dim)
self.ln_1 = LayerNorm(dim, norm_eps)
self.ln_2 = LayerNorm(dim, norm_eps)
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]):
h = x + self.attn(self.ln_1(x), start_pos, mask)
return (h + self.mlp(self.ln_2(h)))
class Transformer:
def __init__(self, dim, n_heads, n_layers, norm_eps, vocab_size, max_seq_len=1024):
self.wte = Embedding(vocab_size, dim)
self.wpe = Embedding(max_seq_len, dim)
self.h = [TransformerBlock(dim, n_heads, norm_eps) for _ in range(n_layers)]
self.ln_f = LayerNorm(dim, norm_eps)
self.lm_head = Linear(dim, vocab_size, bias=False)
self.forward_jit = TinyJit(self.forward)
def forward(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0):
if not hasattr(self, 'allpos'): self.allpos = Tensor.arange(0, MAX_CONTEXT).reshape(1, -1).realize()
_bsz, seqlen = tokens.shape
tok_emb = self.wte(tokens)
pos_emb = self.wpe(self.allpos.shrink((None, (start_pos, start_pos+seqlen))))
h = tok_emb + pos_emb
mask = Tensor.full((1, 1, seqlen, start_pos.val+seqlen), float("-inf")).triu(start_pos.val+1).realize() if seqlen > 1 else None
for hi in self.h: h = hi(h, start_pos=start_pos, mask=mask)
logits = self.lm_head(self.ln_f(h))
return (logits[:, -1, :] / (temperature+1e-10)).softmax().realize()
# TODO: fix empty token
def __call__(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0) -> Tensor:
return (self.forward_jit if tokens.shape[1] == 1 and getenv("JIT", int(not CI)) else self.forward)(tokens, start_pos, temperature)
VOCAB_SIZE = 50257
MODEL_PARAMS = {
'gpt2': dict(n_layers=12, n_heads=12, dim=768, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 124M params
'gpt2-medium': dict(n_layers=24, n_heads=16, dim=1024, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 350M params
'gpt2-large': dict(n_layers=36, n_heads=20, dim=1280, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 774M params
'gpt2-xl': dict(n_layers=48, n_heads=25, dim=1600, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 1558M params
}
class GPT2:
@staticmethod
def build(model_size="gpt2"):
tokenizer = tiktoken.get_encoding("gpt2")
model = Transformer(**MODEL_PARAMS[model_size])
weights = torch_load(fetch(f'https://huggingface.co/{model_size}/resolve/main/pytorch_model.bin'))
# special treatment for the Conv1D weights we need to transpose
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
for k in weights.keys():
if any(k.endswith(w) for w in transposed):
weights[k] = Tensor(weights[k].numpy().T)
# lm head and wte are tied
weights['lm_head.weight'] = Tensor(weights['wte.weight'].numpy())
load_state_dict(model, weights)
return GPT2(model, tokenizer)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def greedy_until(self, prompt:str, max_length:int, temperature:float, timing:bool=False, batch_size:int=1):
prompt_tokens = self.tokenizer.encode(prompt, allowed_special={"<|endoftext|>"})
toks = [prompt_tokens[:] for _ in range(batch_size)]
start_pos = 0
for _ in trange(max_length, disable=(timing==True)):
GlobalCounters.reset()
if timing: print("")
st = GlobalCounters.time_sum_s
with Timing("total ", enabled=timing):
with Timing("ran model in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=timing):
probs = self.model(Tensor([x[start_pos:] for x in toks]), Variable("start_pos", 1 if start_pos else 0, MAX_CONTEXT).bind(start_pos), temperature)
# TODO: fix JIT rand so we can put this in the JIT
tok = probs.multinomial().flatten().numpy().tolist()
start_pos = len(toks[0])
for i,t in enumerate(tok): toks[i].append(t)
output = [self.tokenizer.decode(x) for x in toks]
return output
# **** main code ****
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
parser = argparse.ArgumentParser(description='Run GPT2 in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--prompt', type=str, default="What is the answer to life, the universe, and everything?", help="Phrase to start with")
parser.add_argument('--count', type=int, default=100, help="Max number of tokens to generate")
parser.add_argument('--temperature', type=float, default=0.8, help="Temperature in the softmax")
parser.add_argument('--model_size', type=str, default="gpt2-medium", help="Size of model to use [gpt2, gpt2-medium, gpt2-large, gpt2-xl]")
parser.add_argument('--timing', action='store_true', help="Print timing per token")
parser.add_argument('--seed', type=int, help="Set the random seed")
parser.add_argument('--batch_size', type=int, default=1, help="Size of model to use [gpt2, gpt2-medium, gpt2-large, gpt2-xl]")
parser.add_argument('--benchmark', type=int, default=-1, help="Benchmark GPT with the given number of tokens")
args = parser.parse_args()
if args.seed is not None:
Tensor._seed = args.seed
np.random.seed(args.seed)
print(f"using {args.model_size}")
gpt2 = GPT2.build(args.model_size)
if args.benchmark != -1:
gpt2.model(Tensor.rand(args.batch_size, args.benchmark), Variable("a", 0, MAX_CONTEXT).bind(0)).realize()
else:
print('Generating text...')
texts = gpt2.greedy_until(args.prompt, args.count, args.temperature, timing=args.timing, batch_size=args.batch_size)
if len(texts) == 1: print(texts[0])
else:
for i,text in enumerate(texts): print(colored(f"Response {i}:", "green"), text)