Files
tinygrad/extra/torch_backend/backend.py
George Hotz e87be0131e torch backend start (#9191)
* start torch backend

* progress

* ugh, you need cpp crap

* 1+1 works

* 1+1 works

* becoming a real backend

* ready to merge?
2025-02-21 16:57:28 +08:00

117 lines
4.6 KiB
Python

from tinygrad import Tensor, dtypes
from tinygrad.helpers import DEBUG
import torch, pathlib
# TODO: don't replicate this in cpp
torch_to_tiny_dtype = {
torch.float32: dtypes.float32,
torch.float64: dtypes.float64,
torch.int32: dtypes.int32,
torch.int64: dtypes.int64,
torch.bool: dtypes.bool,
}
import torch.utils.cpp_extension
mod = torch.utils.cpp_extension.load(name="custom_device_extension", sources=[pathlib.Path(__file__).parent / "wrapped_tensor.cpp"])
wrap, unwrap = mod.wrap, mod.unwrap
class TinyBackend: pass
torch.utils.rename_privateuse1_backend("tiny")
torch._register_device_module("tiny", TinyBackend)
torch.utils.generate_methods_for_privateuse1_backend()
@torch.library.impl("aten::view", "privateuseone")
def view(x, sz): return mod.wrap(mod.unwrap(x).reshape(sz))
@torch.library.impl("aten::min", "privateuseone")
def min(x): return mod.wrap(mod.unwrap(x).min())
@torch.library.impl("aten::max", "privateuseone")
def max(x): return mod.wrap(mod.unwrap(x).max())
@torch.library.impl("aten::zero_", "privateuseone")
def zero_(x):
tt = mod.unwrap(x)
tt.replace(tt.zeros_like())
@torch.library.impl("aten::fill_.Scalar", "privateuseone")
def fill_scalar(x, y):
tt = unwrap(x)
tt.replace(tt.full_like(y))
@torch.library.impl("aten::_local_scalar_dense", "privateuseone")
def _local_scalar_dense(tensor): return unwrap(tensor).item()
@torch.library.impl("aten::masked_select", "privateuseone")
def masked_select(self, mask):
# err, bad
return wrap(Tensor(self.cpu().numpy()[mask.cpu().numpy()]))
@torch.library.impl("aten::as_strided", "privateuseone")
def as_strided(tensor, size, stride, storage_offset=None):
if size == [] and storage_offset is not None:
# TODO: is this right?
return wrap(unwrap(tensor).flatten()[storage_offset:storage_offset+1].reshape(()))
print(tensor.shape, size, stride, storage_offset)
raise NotImplementedError("fix as_strided")
@torch.library.impl("aten::empty_strided", "privateuseone")
def empty_strided(size, stride, dtype, layout, device, pin_memory):
if DEBUG >= 2: print(f"empty_strided {size=} {stride=} {dtype=} {layout=} {device=} {pin_memory=}")
ret = Tensor.empty(*size, dtype=torch_to_tiny_dtype[dtype])
return wrap(ret)
@torch.library.impl("aten::empty.memory_format", "privateuseone")
def empty_memory_format(size, dtype=None, layout=None, device=None, pin_memory=False, memory_format=None):
if DEBUG >= 2: print(f"empty.memory_format {size=} {dtype=} {layout=} {device=} {pin_memory=} {memory_format=}")
ret = Tensor.empty(*size, dtype=torch_to_tiny_dtype[dtype])
return wrap(ret)
@torch.library.impl("aten::convolution_overrideable", "privateuseone")
def convolution_overrideable(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups):
print(input, weight, bias)
raise NotImplementedError
@torch.library.impl("aten::_copy_from", "privateuseone")
def _copy_from(src, dest):
if str(src.device) == "tiny" and str(dest.device) == "tiny":
unwrap(dest).replace(unwrap(src), allow_shape_mismatch=True)
elif str(src.device) == "tiny" and str(dest.device) == "cpu":
dest[:] = torch.from_numpy(unwrap(src).numpy())
elif str(src.device) == "cpu" and str(dest.device) == "tiny":
unwrap(dest).assign(Tensor(src.numpy()))
else:
raise NotImplementedError(f"can't copy from {src.device} -> {dest.device}")
@torch.library.impl("aten::exp2.out", "privateuseone")
def exp2_out(x, out): unwrap(out).replace(unwrap(x).exp2(), allow_shape_mismatch=True)
@torch.library.impl("aten::ceil.out", "privateuseone")
def ceil_out(x, out): unwrap(out).replace(unwrap(x).ceil(), allow_shape_mismatch=True)
@torch.library.impl("aten::abs.out", "privateuseone")
def abs_out(x, out): unwrap(out).replace(unwrap(x).abs(), allow_shape_mismatch=True)
@torch.library.impl("aten::bitwise_and.Tensor", "privateuseone")
def bitwise_and_tensor(x, y): return wrap(unwrap(x) & unwrap(y))
@torch.library.impl("aten::add.Tensor", "privateuseone")
def add_tensor(x, y): return wrap(unwrap(x) + unwrap(y))
@torch.library.impl("aten::mul.Tensor", "privateuseone")
def mul_tensor(x, y): return wrap(unwrap(x) * unwrap(y))
@torch.library.impl("aten::div.Tensor", "privateuseone")
def div_tensor(x, y): return wrap(unwrap(x) / unwrap(y))
@torch.library.impl("aten::eq.Tensor", "privateuseone")
def eq_tensor(x, y): return wrap(unwrap(x).eq(unwrap(y)))
@torch.library.impl("aten::ne.Tensor", "privateuseone")
def ne_tensor(x, y): return wrap(unwrap(x).ne(unwrap(y)))
@torch.library.impl("aten::ne.Scalar", "privateuseone")
def ne_scalar(x, y): return wrap(unwrap(x).ne(y))
@torch.library.impl("aten::gt.Scalar", "privateuseone")
def gt_scalar(x, y): return wrap(unwrap(x) > y)