mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-10 07:28:15 -05:00
* ConstantOfShape ONNX test fixed. * removed redundant if statement * value is optional and should default to a float32 tensor with value of 0 * fixed: default parameters are created at function definition, bad for mutable objects.
203 lines
10 KiB
Python
203 lines
10 KiB
Python
from __future__ import annotations
|
|
from google.protobuf.internal.containers import RepeatedCompositeFieldContainer
|
|
import importlib
|
|
import numpy as np
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.helpers import prod
|
|
from tinygrad.helpers import getenv, DEBUG
|
|
from onnx.onnx_pb import AttributeProto, ModelProto, TensorProto
|
|
try:
|
|
from onnx.helper import tensor_dtype_to_np_dtype
|
|
except ImportError:
|
|
# for onnx < 1.13
|
|
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
|
|
tensor_dtype_to_np_dtype = lambda x: TENSOR_TYPE_TO_NP_TYPE[x]
|
|
|
|
# global numpy cache for parameters
|
|
numpy_cache = {}
|
|
def safe_numpy(t):
|
|
if not isinstance(t, Tensor): return t
|
|
global numpy_cache
|
|
if t not in numpy_cache:
|
|
if DEBUG >= 1:
|
|
print("numpy cache miss", t)
|
|
numpy_cache[t] = t.numpy()
|
|
return numpy_cache[t]
|
|
|
|
onnx_ops = importlib.import_module('extra.onnx_ops')
|
|
|
|
ONNXLIMIT = getenv("ONNXLIMIT", -1)
|
|
|
|
def get_run_onnx(onnx_model: ModelProto):
|
|
def shape_to_tuple(s): return tuple(x.dim_value for x in s.dim)
|
|
def buffer_parse(inp: TensorProto) -> Tensor:
|
|
if inp.data_type in (1,10,6,7):
|
|
# TODO: this is shared with below
|
|
if len(inp.float_data) > 0:
|
|
ret = Tensor(np.array(inp.float_data, dtype=np.float32).reshape(inp.dims), requires_grad=False)
|
|
elif len(inp.int64_data) > 0:
|
|
ret = Tensor(np.array(inp.int64_data, dtype=np.float32).reshape(inp.dims), requires_grad=False)
|
|
elif len(inp.int32_data) > 0:
|
|
ret = Tensor(np.array(inp.int32_data, dtype=np.int32).reshape(inp.dims), requires_grad=False)
|
|
else:
|
|
ret = Tensor(np.frombuffer(inp.raw_data, dtype=tensor_dtype_to_np_dtype(inp.data_type)).reshape(inp.dims).astype(np.float32).copy(), requires_grad=False)
|
|
else:
|
|
raise Exception(f"bad data type {inp.name} {inp.dims} {inp.data_type}")
|
|
return ret
|
|
|
|
def attribute_parse(a: AttributeProto) -> float | int | str | Tensor | tuple[float] | tuple[int]:
|
|
# TODO: this is not complete, see onnx/onnx_ml_pb2.pyi for a complete list
|
|
if a.type == AttributeProto.FLOAT: return float(a.f)
|
|
elif a.type == AttributeProto.INT: return int(a.i)
|
|
elif a.type == AttributeProto.STRING: return a.s.decode("utf-8")
|
|
elif a.type == AttributeProto.TENSOR: return buffer_parse(a.t) # TENSOR
|
|
elif a.type == AttributeProto.FLOATS: return tuple(float(x) for x in a.floats)
|
|
elif a.type == AttributeProto.INTS: return tuple(int(x) for x in a.ints)
|
|
else: raise Exception(f"can't parse {a.type} {a}")
|
|
def attribute_to_dict(a: RepeatedCompositeFieldContainer[AttributeProto]): return {x.name:attribute_parse(x) for x in a}
|
|
|
|
tensors = {}
|
|
|
|
# get weights and biases
|
|
for inp in onnx_model.graph.initializer:
|
|
if len(inp.raw_data) > 0:
|
|
tensors[inp.name] = buffer_parse(inp)
|
|
elif len(inp.float_data) > 0:
|
|
tensors[inp.name] = Tensor(np.array(inp.float_data, dtype=np.float32).reshape(inp.dims), requires_grad=False)
|
|
elif len(inp.int64_data) > 0:
|
|
tensors[inp.name] = Tensor(np.array(inp.int64_data, dtype=np.float32).reshape(inp.dims), requires_grad=False)
|
|
else:
|
|
print(inp.name, inp.dims, inp.data_type, len(inp.raw_data))
|
|
print(inp)
|
|
raise Exception("no data")
|
|
if DEBUG >= 1:
|
|
print("realize", inp.name)
|
|
tensors[inp.name].realize()
|
|
|
|
# preparse the attributes
|
|
attribute_dict = {}
|
|
for num,n in enumerate(onnx_model.graph.node):
|
|
attribute_dict[num] = attribute_to_dict(n.attribute)
|
|
|
|
onnx_model_version = onnx_model.opset_import[0].version
|
|
|
|
def run_onnx(inputs={}, debug=False):
|
|
if getenv("DEBUGONNX"): debug = True
|
|
input_tensors = {}
|
|
intermediate_tensors = {}
|
|
output_tensor_names = [x.name for x in onnx_model.graph.output]
|
|
|
|
# get inputs
|
|
for inp in onnx_model.graph.input:
|
|
if inp.name in tensors: continue
|
|
shape = shape_to_tuple(inp.type.tensor_type.shape)
|
|
if len(shape) >= 1 and shape[0] == 0: shape = tuple([1]+list(shape[1:])) # 1 batch size
|
|
if inp.name in inputs:
|
|
input_shape = inputs[inp.name].shape
|
|
if input_shape == (0,): raise NotImplementedError("empty tensors aren't supported in tinygrad")
|
|
assert input_shape == shape, f"wrong shape for input {inp.name}, {input_shape} isn't {shape}"
|
|
if isinstance(inputs[inp.name], Tensor):
|
|
input_tensors[inp.name] = inputs[inp.name]
|
|
else:
|
|
input_tensors[inp.name] = Tensor(inputs[inp.name], requires_grad=False)
|
|
for _,v in input_tensors.items(): v.realize()
|
|
else:
|
|
raise Exception(f"no data for {inp.name} with shape {shape}")
|
|
|
|
for num,n in enumerate(onnx_model.graph.node):
|
|
inp = [tensors[x] if x in tensors else (intermediate_tensors[x] if x in intermediate_tensors else (input_tensors[x] if x != str() else None)) for x in n.input]
|
|
opt = attribute_dict[num]
|
|
if debug: print(f"{num}: op {n.op_type} shape {[x.shape if isinstance(x, Tensor) else x for x in inp]} opt {opt}")
|
|
|
|
# free ones
|
|
if n.op_type == "Relu": ret = inp[0].relu()
|
|
elif n.op_type == "Sigmoid": ret = inp[0].sigmoid()
|
|
elif n.op_type == "Tanh": ret = inp[0].tanh()
|
|
elif n.op_type == "MatMul": ret = inp[0].matmul(inp[1])
|
|
# one liners
|
|
elif n.op_type == "Elu": ret = inp[0].elu(alpha=opt.get('alpha', 1.0))
|
|
elif n.op_type == "Concat": ret = inp[0].cat(*inp[1:], dim=opt['axis'])
|
|
elif n.op_type == "Transpose": ret = inp[0].permute(order=opt.get('perm', list(range(len(inp[0].shape))[::-1])))
|
|
elif n.op_type == "Squeeze": ret = inp[0].reshape([s for i,s in enumerate(inp[0].shape) if i not in opt['axes']])
|
|
elif n.op_type == "Div":
|
|
# in openpilot, due to SHUFFLE_PAD_OPS issues, we are spending an extra kernel
|
|
ret = inp[0].div(inp[1])
|
|
elif n.op_type == "Constant":
|
|
if 'value' in opt: ret = opt['value'] # tensor
|
|
elif 'value_float' in opt: ret = Tensor(np.array(opt['value_float'], dtype=np.float32), requires_grad=False)
|
|
elif 'value_int' in opt: ret = Tensor(np.array(opt['value_int'], dtype=np.int64), requires_grad=False)
|
|
elif 'value_floats' in opt: ret = Tensor(np.array(opt['value_floats'], dtype=np.float32), requires_grad=False)
|
|
elif 'value_ints' in opt: ret = Tensor(np.array(opt['value_ints'], dtype=np.int64), requires_grad=False)
|
|
else: raise NotImplementedError(f'Constant not implemented')
|
|
elif n.op_type == "Reshape": ret = inp[0].reshape([int(x) if x != 0 else inp[0].shape[i] for i,x in enumerate(safe_numpy(inp[1]))])
|
|
elif n.op_type == "Resize":
|
|
# TODO: this is handcoded for YOLOv8
|
|
scales = safe_numpy(inp[2])
|
|
assert all([int(x) == x and x >= 1 for x in scales])
|
|
ret = inp[0].reshape([val for pair in zip(inp[0].shape, [1] * len(scales)) for val in pair])
|
|
ret = ret.expand([val for pair in zip(inp[0].shape, [int(x) for x in scales]) for val in pair])
|
|
ret = ret.reshape([x*y for x,y in zip(inp[0].shape, [int(x) for x in scales])])
|
|
elif n.op_type == "Gather":
|
|
# TODO: is this correct? seems to work for simple gather ops
|
|
axis = opt['axis']
|
|
shape = list(inp[0].shape)
|
|
indices = [shape[axis]+int(x) if x<0 else int(x) for x in safe_numpy(inp[1])]
|
|
args = [[(0,x) if j != axis else (i,i+1) for j, x in enumerate(shape)] for i in indices]
|
|
ret = inp[0].slice(arg=args[0]).cat(*[inp[0].slice(arg=arg) for arg in args[1:]], dim=axis)
|
|
ret = ret.reshape([s for i,s in enumerate(shape) if i != axis]) if len(indices) == 1 else ret # squeeze if needed
|
|
elif n.op_type in ["Add", "Sub", "Mul", "Pow"]:
|
|
if (len(inp[0].shape) != len(inp[1].shape)) and (prod(inp[0].shape) == prod(inp[1].shape)):
|
|
inp[1] = inp[1].reshape(inp[0].shape)
|
|
# TODO: is this right?
|
|
if 'broadcast' in opt: inp[1] = inp[1].reshape([-1 if i == opt['broadcast'] else 1 for i in range(len(inp[0].shape))])
|
|
if n.op_type == "Add": ret = inp[0] + inp[1]
|
|
if n.op_type == "Sub": ret = inp[0] - inp[1]
|
|
if n.op_type == "Mul": ret = inp[0] * inp[1]
|
|
if n.op_type == "Pow": ret = inp[0] ** inp[1]
|
|
elif n.op_type == "Split":
|
|
if 'split' not in opt: opt['split'] = [int(x) for x in safe_numpy(inp[1])] # split can be a tensor
|
|
if 'axis' not in opt: opt['axis'] = 0
|
|
i = 0
|
|
arg = [(0,x) for x in inp[0].shape]
|
|
for o,s in zip(n.output, opt['split']):
|
|
arg[opt['axis']] = (i,i+s)
|
|
intermediate_tensors[o] = inp[0].slice(arg=arg)
|
|
i = i+s
|
|
continue
|
|
elif n.op_type == "Slice":
|
|
assert onnx_model_version >= 10, f'only onnx version >= 10 supported for slice'
|
|
arg = [(0,x) for x in inp[0].shape]
|
|
starts, ends, axes = inp[1:4]
|
|
assert axes.shape == (1,)
|
|
axis, starts, ends = int(safe_numpy(axes)[0]), int(safe_numpy(starts)[0]), int(safe_numpy(ends)[0])
|
|
ends = min(ends, inp[0].shape[axis])
|
|
starts = starts + inp[0].shape[axis] if starts < 0 else starts
|
|
arg[axis] = (starts, ends)
|
|
ret = inp[0].slice(arg=arg)
|
|
elif n.op_type == "Shrink":
|
|
bias = opt['bias'] if 'bias' in opt else 0
|
|
ret = (inp[0] < -opt['lambd'])*(inp[0]+bias) + (inp[0] > opt['lambd'])*(inp[0]-bias)
|
|
elif hasattr(onnx_ops, n.op_type):
|
|
fxn = getattr(onnx_ops, n.op_type)
|
|
if isinstance(fxn, dict):
|
|
for k in sorted(fxn.keys()):
|
|
if k < onnx_model_version:
|
|
real_fxn = fxn[k]
|
|
else:
|
|
real_fxn = fxn
|
|
ret = real_fxn(*inp, **opt)
|
|
else:
|
|
print("UNSUPPORTED", n.op_type, n.input, n.output)
|
|
raise Exception(f"op_type {n.op_type} not supported")
|
|
if not isinstance(ret, tuple): ret = (ret, )
|
|
assert len(n.output) <= len(ret), f"expected output size must be less than {len(ret)}, it's {n.output}"
|
|
if debug: print([x.shape if isinstance(x, Tensor) else None for x in ret])
|
|
for i in range(len(n.output)): intermediate_tensors[n.output[i]] = ret[i]
|
|
#print(ret[0].numpy().mean())
|
|
if num == ONNXLIMIT:
|
|
output_tensor_names = n.output
|
|
break
|
|
|
|
return {outp:intermediate_tensors[outp] for outp in output_tensor_names}
|
|
return run_onnx
|