Files
tinygrad/test/test_symbolic_jit.py
Ben Waldron ea1be2e4cd [bounty] Remove using reshape to register symbolic shape (#11771)
* Modify tests and start work towards removing symbolic reshape

* Refactor symbolic reshape

* fix small error

* much cleaner + fix more tests

* Can remove this now

* Update test_symbolic_ops and test_tiny

* Couple more tests

* Unused import

* More tests and add EXPAND to Tensor.empty

* Fix test beam search

* all int

* Fix rangeify by adding shrink

* Remove OOB check and so fix test_symbolic_jit

* test_symbolic_jit doesn't need OOB Context anymore either

* Should remove that test now

* Cleanups part 1

* fix linters

* Final cleanups

* Don't reassign inside for loop

---------

Co-authored-by: chenyu <chenyu@fastmail.com>
2025-08-28 12:30:49 -04:00

319 lines
11 KiB
Python

import unittest
from test.helpers import assert_jit_cache_len
from tinygrad import Variable, Tensor, TinyJit
import numpy as np
class TestSymbolicJit(unittest.TestCase):
def test_plus1(self):
def f(a): return (a+1).realize()
jf = TinyJit(f)
a = Tensor.rand(3, 10)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(a[:, :vi]).reshape(3, i).numpy()
expected = f(a[:, :i]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_add(self):
def f(a, b): return (a+b).realize()
jf = TinyJit(f)
a = Tensor.rand(3, 10)
b = Tensor.rand(3, 10)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(a[:, :vi], b[:, :vi]).reshape(3, i).numpy()
expected = f(a[:, :i], b[:, :i]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_matmul(self):
def f(a, b): return (a@b).realize()
jf = TinyJit(f)
a = Tensor.rand(3, 10)
b = Tensor.rand(10, 5)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(a[:, :vi], b[:vi, :]).numpy()
expected = f(a[:, :i], b[:i, :]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_mixed_with_no_symbol_kernel(self):
def f(a, b):
s = (a@b).realize()
s = (s+s).realize() # this one does not have symbols in input
return s
jf = TinyJit(f)
a = Tensor.rand(3, 10)
b = Tensor.rand(10, 5)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(a[:, :vi], b[:vi, :]).numpy()
expected = f(a[:, :i], b[:i, :]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 2)
def test_attention(self):
def f(q, k, v): return Tensor.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).realize()
jf = TinyJit(f)
q = Tensor.rand(2, 1, 4, 8)
k = Tensor.rand(2, 10, 4, 8)
v = Tensor.rand(2, 10, 4, 8)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(q, k[:, :vi], v[:, :vi]).reshape(2, 4, 1, 8).numpy()
expected = f(q, k[:, :i], v[:, :i]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 5)
def test_cat_dim0(self):
def f(a, b): return a.cat(b, dim=0).realize()
jf = TinyJit(f)
a = Tensor.rand(10, 3)
b = Tensor.rand(2, 3)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(a[:vi], b).reshape(i+2, 3).numpy()
expected = f(a[:i], b).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_cat_dim1(self):
def f(a, b): return a.cat(b, dim=1).realize()
jf = TinyJit(f)
a = Tensor.rand(3, 10)
b = Tensor.rand(3, 2)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(a[:, :vi], b).reshape(3, i+2).numpy()
expected = f(a[:, :i], b).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_cat_dim0_two_vars(self):
def f(a, b): return a.cat(b, dim=0).realize()
jf = TinyJit(f)
a = Tensor.rand(10, 3)
b = Tensor.rand(10, 3)
for i in range(1, 5):
for j in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
vj = Variable("j", 1, 10).bind(j)
symbolic = jf(a[:vi], b[:vj]).reshape(i+j, 3).numpy()
expected = f(a[:i], b[:j]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_cat_dim1_two_vars(self):
def f(a, b): return a.cat(b, dim=1).realize()
jf = TinyJit(f)
a = Tensor.rand(3, 10)
b = Tensor.rand(3, 10)
for i in range(1, 5):
for j in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
vj = Variable("j", 1, 10).bind(j)
symbolic = jf(a[:, :vi], b[:, :vj]).reshape(3, i+j).numpy()
expected = f(a[:, :i], b[:, :j]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_two_vars_plus1_ij(self):
def f(a, b): return (a@b+1).realize()
jf = TinyJit(f)
a = Tensor.rand(10, 3)
b = Tensor.rand(3, 10)
for i in range(1, 5):
for j in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
vj = Variable("j", 1, 10).bind(j)
symbolic = jf(a[:vi, :], b[:, :vj]).reshape(i, j).numpy()
expected = f(a[:i, :], b[:, :j]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_two_vars_plus1_ji(self):
def f(a, b): return (a@b+1).realize()
jf = TinyJit(f)
a = Tensor.rand(10, 3)
b = Tensor.rand(3, 10)
for i in range(1, 5):
for j in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
vj = Variable("j", 1, 10).bind(j)
symbolic = jf(a[:vj, :], b[:, :vi]).reshape(j, i).numpy()
expected = f(a[:j, :], b[:, :i]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_jit_symbolic_shape_mismatch(self):
@TinyJit
def add(a, b): return (a+b).realize()
a = Tensor.rand(3, 10)
b = Tensor.rand(3, 10)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
add(a[:, :vi], b[:, :vi])
vi2 = Variable("i", 1, 10).bind(7)
a = Tensor.rand(3, 7)[:, :vi2]
bad = Tensor.rand(4, 7)[:, :vi2]
with self.assertRaises(AssertionError):
add(a, bad)
def test_shrink(self):
# shrink is a movement, so we pair it with a simple function to test the JIT interaction
def f(a): return (a+1).realize()
jf = TinyJit(f)
a = Tensor.rand(7, 11)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = a.shrink(((3,5),(vi,vi+2)))
symbolic = jf(symbolic).numpy()
expected = f(a.shrink(((3,5),(i,i+2)))).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_slice(self):
# slice is a movement, so we pair it with a simple function to test the JIT interaction
def f(a): return (a+1).realize()
jf = TinyJit(f)
a = Tensor.rand(7, 11)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = a[3:5, vi:vi+2]
symbolic = jf(symbolic).numpy()
expected = f(a[3:5, i:i+2]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_slice_var_shape(self):
def f(a): return (a+1).realize()
jf = TinyJit(f)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
a = Tensor.ones(vi, 11).contiguous()
symbolic = a[:, 1:2]
symbolic = jf(symbolic).reshape(i, 1).numpy()
expected = f(a.reshape(i, 11)[:, 1:2]).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
assert_jit_cache_len(jf, 1)
def test_ones_sum(self):
def f(a): return a.sum().realize()
jf = TinyJit(f)
t = Tensor.ones(10)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
symbolic = jf(t[:vi]).item()
expected = f(t[:i]).item()
np.testing.assert_equal(symbolic, expected)
def test_mean(self):
def f(a): return a.mean().realize()
def f0(a): return a.mean(0).realize()
def f1(a): return a.mean(1).realize()
jf = TinyJit(f)
jf0 = TinyJit(f0)
jf1 = TinyJit(f1)
a = Tensor.rand(10, 3)
b = Tensor.rand(10, 3)
c = Tensor.rand(10, 3)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
# axis = None
symbolic = jf(a[:vi]).numpy()
expected = a[:i].mean().numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 0
symbolic = jf0(b[:vi]).numpy()
expected = b[:i].mean(0).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 1
symbolic = jf1(c[:vi]).reshape(i).numpy()
expected = c[:i].mean(1).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
def test_mean_2d(self):
def f(a): return a.mean().realize()
def f0(a): return a.mean(0).realize()
def f1(a): return a.mean(1).realize()
jf = TinyJit(f)
jf0 = TinyJit(f0)
jf1 = TinyJit(f1)
a = Tensor.rand(10, 10)
b = Tensor.rand(10, 10)
c = Tensor.rand(10, 10)
for i in range(1, 5):
for j in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
vj = Variable("j", 1, 10).bind(j)
# axis = None
symbolic = jf(a[:vi, :vj]).numpy()
expected = a[:i, :j].mean().numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 0
symbolic = jf0(b[:vi, :vj]).reshape(j).numpy()
expected = b[:i, :j].mean(0).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 1
symbolic = jf1(c[:vi, :vj]).reshape(i).numpy()
expected = c[:i, :j].mean(1).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
def test_var(self):
def f(a): return a.var().realize()
def f0(a): return a.var(0).realize()
def f1(a): return a.var(1).realize()
jf = TinyJit(f)
jf0 = TinyJit(f0)
jf1 = TinyJit(f1)
a = Tensor.rand(10, 3)
b = Tensor.rand(10, 3)
c = Tensor.rand(10, 3)
for i in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
# axis = None
symbolic = jf(a[:vi]).numpy()
expected = a[:i].var().numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 0
symbolic = jf0(b[:vi]).numpy()
expected = b[:i].var(0).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 1
symbolic = jf1(c[:vi]).reshape(i).numpy()
expected = c[:i].var(1).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
def test_var_2d(self):
def f(a): return a.var().realize()
def f0(a): return a.var(0).realize()
def f1(a): return a.var(1).realize()
jf = TinyJit(f)
jf0 = TinyJit(f0)
jf1 = TinyJit(f1)
a = Tensor.rand(10, 10)
b = Tensor.rand(10, 10)
c = Tensor.rand(10, 10)
for i in range(1, 5):
for j in range(1, 5):
vi = Variable("i", 1, 10).bind(i)
vj = Variable("j", 1, 10).bind(j)
# axis = None
symbolic = jf(a[:vi, :vj]).numpy()
expected = a[:i, :j].var().numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 0
symbolic = jf0(b[:vi, :vj]).reshape(j).numpy()
expected = b[:i, :j].var(0).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
# axis = 1
symbolic = jf1(c[:vi, :vj]).reshape(i).numpy()
expected = c[:i, :j].var(1).numpy()
np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6)
if __name__ == '__main__':
unittest.main()