Files
tinygrad/test/opt/test_gen_float4.py

158 lines
6.4 KiB
Python

import unittest
from tinygrad import Device, Tensor, dtypes
from tinygrad.uop.ops import UOp, Ops
from tinygrad.codegen.opt import Opt, OptOps
from tinygrad.engine.realize import get_program
from tinygrad.helpers import AMX
@unittest.skipUnless(Device[Device.DEFAULT].renderer.supports_float4, "need backends that support float4")
class TestFloat4(unittest.TestCase):
@staticmethod
def count_float4(uops: list[UOp], n=4):
return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.float.vec(n)]),
len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.float.vec(n)]))
@staticmethod
def count_half4(uops: list[UOp]):
return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.half.vec(4)]),
len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.half.vec(4)]))
def test_float4_basic(self):
a = Tensor.empty(2, 8).realize()
b = Tensor.empty(2, 8).realize()
c = a + b
s = c.schedule()[0]
realized_ast = s.ast
opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)]
program = get_program(realized_ast, renderer=Device[Device.DEFAULT].renderer, opts=opts_to_apply)
assert TestFloat4.count_float4(program.uops) == (2, 1)
@unittest.skipIf(Device.DEFAULT in {"CPU"} and AMX, "CPU with AMX upcasts float up to size 16")
def test_float4_multidim(self):
a = Tensor.empty(2, 8).realize()
b = Tensor.empty(2, 8).realize()
c = a + b
s = c.schedule()[0]
uops = get_program(s.ast, renderer=Device[Device.DEFAULT].renderer,
opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=2)]).uops
assert TestFloat4.count_float4(uops) == (4, 2)
@unittest.skipUnless(Device.DEFAULT in {"CPU"} and AMX, "Only CPU with AMX upcasts float up to size 16")
def test_float4_multidim_amx(self):
def kernel_for_shape(size, shift):
a = Tensor.empty(2, size).realize()
b = Tensor.empty(2, size).realize()
c = a + b
s = c.schedule()[0]
return get_program(s.ast, renderer=Device[Device.DEFAULT].renderer,
opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=shift)]).uops
sizes = [12, 8, 16]
shifts = [3, 2, 4]
expected_upcast_size = [4, 8, 16]
expected_output = [(6,3), (2,1), (2,1)]
for i in range(len(sizes)):
assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i]
def test_float4_unaligned_load(self):
a = Tensor.empty(9).realize().shrink(((1, 9),))
b = Tensor.empty(9).realize().shrink(((1, 9),))
c = a + b
s = c.schedule()[0]
realized_ast = s.ast
opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)]
program = get_program(realized_ast, renderer=Device[Device.DEFAULT].renderer, opts=opts_to_apply)
assert TestFloat4.count_float4(program.uops) == (0, 1)
@unittest.skipIf(Device.DEFAULT in {"CPU"} and AMX, "CPU with AMX upcasts float up to size 16")
def test_float4_multidim_unaligned_load(self):
a = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),))
b = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),))
c = a + b
s = c.schedule()[0]
uops = get_program(s.ast, renderer=Device[Device.DEFAULT].renderer,
opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=2)]).uops
assert TestFloat4.count_float4(uops) == (0, 2)
@unittest.skipUnless(Device.DEFAULT in {"CPU"} and AMX, "Only CPU with AMX upcasts float up to size 16")
def test_float4_multidim_unaligned_load_amx(self):
def kernel_for_shape(size, shift):
a = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),))
b = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),))
c = a + b
s = c.schedule()[0]
return get_program(s.ast, renderer=Device[Device.DEFAULT].renderer,
opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=shift)]).uops
sizes = [13, 9, 17]
shifts = [3, 2, 4]
expected_upcast_size = [4, 8, 16]
expected_output = [(0,3), (0,1), (0,1)]
for i in range(len(sizes)):
assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i]
def test_float4_sometimes_unaligned(self):
a = Tensor.empty(1, 1, 8).realize()
b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# only the first and last conv dot products are aligned in a, and b is never aligned, so no
# float4 should be emitted (the reduce axis of size 4 is the float4 axis here)
s = c.schedule()[0]
uops = get_program(s.ast, renderer=Device[Device.DEFAULT].renderer, opts=[Opt(op=OptOps.UNROLL, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (0, 0)
def test_float4_multidim_sometimes_unaligned(self):
a = Tensor.empty(1, 1, 7).realize()
b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# the first conv dot product is aligned in a. If we upcast the output and reduce
# dimension, then we could do float4 for only that one set of loads, but we currently
# don't.
# UPDATE: now we do this fusion
s = c.schedule()[0]
uops = get_program(s.ast, renderer=Device[Device.DEFAULT].renderer,
opts=[Opt(op=OptOps.UPCAST, axis=0, arg=0), Opt(op=OptOps.UNROLL, axis=0, arg=0)]).uops
assert TestFloat4.count_float4(uops) in {(0,1), (1,1)}
def test_float4_expand(self):
a = Tensor.empty(9).realize().shrink(((1, 9),))
b = Tensor.empty(2).realize().reshape((2, 1)).expand((2,4)).reshape((8,))
c = a + b
# we will upcast the top axis of sz 4. they should not be coalesced into float4,
# since the top axis is not contiguous.
s = c.schedule()[0]
uops = get_program(s.ast, renderer=Device[Device.DEFAULT].renderer, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (0, 1)
def test_float4_heterogeneous(self):
a = Tensor.empty(8).realize()
b = Tensor.empty(9).realize().shrink(((1, 9),))
c = a + b
# should float4 b but not a
s = c.schedule()[0]
uops = get_program(s.ast, renderer=Device[Device.DEFAULT].renderer, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (1, 1)
if __name__ == '__main__':
unittest.main()