Files
tinygrad/tinygrad/runtime/ops_nv.py
nimlgen a93982ef42 hcq move out program call to base class (#5638)
* hcq move out program call to base class

* fix
2024-07-23 14:25:38 +03:00

566 lines
36 KiB
Python

from __future__ import annotations
import os, ctypes, contextlib, pathlib, re, fcntl, functools, mmap, struct, tempfile, hashlib, subprocess, time, array
from typing import Tuple, List, Any, cast, Union, Dict
from dataclasses import dataclass
from tinygrad.device import HCQCompiled, HCQAllocator, HCQBuffer, HWCommandQueue, HWComputeQueue, HWCopyQueue, hcq_command, \
HCQProgram, HCQSignal, Compiler, CompileError, BufferOptions
from tinygrad.helpers import getenv, mv_address, init_c_struct_t, to_mv, round_up, data64, data64_le, to_char_p_p, DEBUG, prod
from tinygrad.renderer.cstyle import NVRenderer
from tinygrad.runtime.ops_cuda import check as cuda_check, _get_bytes, CUDACompiler, PTXCompiler, PTX
import tinygrad.runtime.autogen.nv_gpu as nv_gpu
import tinygrad.runtime.autogen.nvrtc as nvrtc
from tinygrad.renderer.assembly import PTXRenderer
import tinygrad.runtime.autogen.libc as libc
from tinygrad.runtime.support.elf import elf_loader
if getenv("IOCTL"): import extra.nv_gpu_driver.nv_ioctl # noqa: F401 # pylint: disable=unused-import
if MOCKGPU:=getenv("MOCKGPU"): import extra.mockgpu.mockgpu # noqa: F401 # pylint: disable=unused-import
def nv_iowr(fd, nr, args):
ret = fcntl.ioctl(fd, (3 << 30) | (ctypes.sizeof(args) & 0x1FFF) << 16 | (ord('F') & 0xFF) << 8 | (nr & 0xFF), args)
if ret != 0: raise RuntimeError(f"ioctl returned {ret}")
def rm_alloc(fd, clss, root, parant, params):
made = nv_gpu.NVOS21_PARAMETERS(hRoot=root, hObjectParent=parant, hClass=clss,
pAllocParms=ctypes.cast(ctypes.byref(params), ctypes.POINTER(None)) if params is not None else None) # type: ignore
nv_iowr(fd, nv_gpu.NV_ESC_RM_ALLOC, made)
if made.status != 0: raise RuntimeError(f"rm_alloc returned {made.status}: {nv_gpu.nv_status_codes.get(made.status, 'Unknown error')}")
return made
def rm_control(cmd, sttyp, fd, client, obj, **kwargs):
made = nv_gpu.NVOS54_PARAMETERS(hClient=client, hObject=obj, cmd=cmd, paramsSize=ctypes.sizeof(params:=sttyp(**kwargs)),
params=ctypes.cast(ctypes.byref(params), ctypes.POINTER(None)) if params is not None else None) # type: ignore
nv_iowr(fd, nv_gpu.NV_ESC_RM_CONTROL, made)
if made.status != 0: raise RuntimeError(f"rm_control returned {made.status}: {nv_gpu.nv_status_codes.get(made.status, 'Unknown error')}")
return params
def make_rmctrl_type():
return type("NVRMCTRL", (object,), {name[name.find("_CTRL_CMD_")+10:].lower(): functools.partial(rm_control, dt, sttyp)
for name,dt in nv_gpu.__dict__.items() if name.find("_CTRL_CMD_")>=0 and
(sttyp:=getattr(nv_gpu, name.replace("_CTRL_CMD_", "_CTRL_")+"_PARAMS", getattr(nv_gpu, name+"_PARAMS", None)))})
rmctrl = make_rmctrl_type()
def uvm_ioctl(cmd, sttyp, fd, **kwargs):
ret = fcntl.ioctl(fd, cmd, made:=sttyp(**kwargs))
if ret != 0: raise RuntimeError(f"ioctl(uvm) returned {ret}")
if made.rmStatus != 0: raise RuntimeError(f"uvm_ioctl returned {made.rmStatus}: {nv_gpu.nv_status_codes.get(made.rmStatus, 'Unknown error')}")
return made
def make_uvm_type():
return type("NVUVM", (object,), {name.replace("UVM_", "").lower(): functools.partial(uvm_ioctl, dt, getattr(nv_gpu, name+"_PARAMS"))
for name,dt in nv_gpu.__dict__.items() if name.startswith("UVM_") and nv_gpu.__dict__.get(name+"_PARAMS")})
uvm = make_uvm_type()
def make_qmd_struct_type():
fields = []
bits = [(name,dt) for name,dt in nv_gpu.__dict__.items() if name.startswith("NVC6C0_QMDV03_00") and isinstance(dt, tuple)]
bits += [(name+f"_{i}",dt(i)) for name,dt in nv_gpu.__dict__.items() for i in range(8) if name.startswith("NVC6C0_QMDV03_00") and callable(dt)]
bits = sorted(bits, key=lambda x: x[1][1])
for i,(name, data) in enumerate(bits):
if i > 0 and (gap:=(data[1] - bits[i-1][1][0] - 1)) != 0: fields.append((f"_reserved{i}", ctypes.c_uint32, gap))
fields.append((name.replace("NVC6C0_QMDV03_00_", "").lower(), ctypes.c_uint32, data[0]-data[1]+1))
return init_c_struct_t(tuple(fields))
qmd_struct_t = make_qmd_struct_type()
assert ctypes.sizeof(qmd_struct_t) == 0x40 * 4
def nvmethod(subc, mthd, size, typ=2): return (typ << 28) | (size << 16) | (subc << 13) | (mthd >> 2)
class NVCompiler(Compiler):
def __init__(self, arch:str):
self.arch, self.compile_options = arch, [f'--gpu-architecture={arch}', "-I/usr/local/cuda/include", "-I/usr/include", "-I/opt/cuda/include/"]
cuda_check(nvrtc.nvrtcVersion((nvrtcMajor := ctypes.c_int()), (nvrtcMinor := ctypes.c_int())))
if (nvrtcMajor.value, nvrtcMinor.value) >= (12, 4): self.compile_options.append("--minimal")
super().__init__(f"compile_nv_{self.arch}")
def compile(self, src:str) -> bytes:
cuda_check(nvrtc.nvrtcCreateProgram(ctypes.byref(prog := nvrtc.nvrtcProgram()), src.encode(), "<null>".encode(), 0, None, None))
status = nvrtc.nvrtcCompileProgram(prog, len(self.compile_options), to_char_p_p([o.encode() for o in self.compile_options]))
if status != 0:
raise CompileError(f"compile failed: {_get_bytes(prog, nvrtc.nvrtcGetProgramLog, nvrtc.nvrtcGetProgramLogSize, cuda_check).decode()}")
return _get_bytes(prog, nvrtc.nvrtcGetCUBIN, nvrtc.nvrtcGetCUBINSize, cuda_check)
def jitlink_check(status):
if status != 0: raise CompileError(f"NvJitLink Error {status}, {nvrtc.nvJitLinkResult__enumvalues.get(status, 'Unknown')}")
class NVPTXCompiler(NVCompiler):
def compile(self, src:str) -> bytes:
ptxsrc = src.replace("TARGET", self.arch).replace("VERSION", "7.8" if self.arch >= "sm_89" else "7.5")
jitlink_check(nvrtc.nvJitLinkCreate(handle := nvrtc.nvJitLinkHandle(), 1, to_char_p_p([f'-arch={self.arch}'.encode()])))
jitlink_check(nvrtc.nvJitLinkAddData(handle, nvrtc.NVJITLINK_INPUT_PTX, ptxsrc.encode(), len(ptxsrc), "<null>".encode()))
if nvrtc.nvJitLinkComplete(handle) != 0:
raise CompileError(f"compile failed: {_get_bytes(handle, nvrtc.nvJitLinkGetErrorLog, nvrtc.nvJitLinkGetErrorLogSize, jitlink_check).decode()}")
return _get_bytes(handle, nvrtc.nvJitLinkGetLinkedCubin, nvrtc.nvJitLinkGetLinkedCubinSize, jitlink_check)
class NVSignal(HCQSignal):
def __init__(self, value=0, **kwargs):
self._signal = NVDevice.signals_pool.pop()
self._signal[0] = value
def __del__(self): NVDevice.signals_pool.append(self._signal)
def _get_value(self) -> int: return self._signal[0]
def _get_timestamp(self) -> float: return self._signal[1] / 1e3
def _set_value(self, new_value:int): self._signal[0] = new_value
def wait(self, value:int, timeout:int=10000):
start_time = time.time() * 1000
while time.time() * 1000 - start_time < timeout:
if self._signal[0] >= value: return
raise RuntimeError(f"wait_result: {timeout} ms TIMEOUT!")
class NVCommandQueue(HWCommandQueue): # pylint: disable=abstract-method
def __del__(self):
if self.binded_device is not None:
self.binded_device.synchronize() # Synchronize to ensure the buffer is no longer in use.
self.binded_device._gpu_free(self.hw_page)
@hcq_command
def setup(self, compute_class=None, copy_class=None, local_mem_window=None, shared_mem_window=None, local_mem=None, local_mem_tpc_bytes=None):
if compute_class: self.q += [nvmethod(1, nv_gpu.NVC6C0_SET_OBJECT, 1), compute_class]
if copy_class: self.q += [nvmethod(4, nv_gpu.NVC6C0_SET_OBJECT, 1), copy_class]
if local_mem_window: self.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_WINDOW_A, 2), *data64(local_mem_window)]
if shared_mem_window: self.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_SHARED_MEMORY_WINDOW_A, 2), *data64(shared_mem_window)]
if local_mem: self.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_A, 2), *data64(local_mem)]
if local_mem_tpc_bytes: self.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_NON_THROTTLED_A, 3), *data64(local_mem_tpc_bytes), 0x40]
def _wait(self, signal, value=0):
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *data64_le(mv_address(signal._signal)), *data64_le(value),
(3 << 0) | (1 << 24)] # ACQUIRE | PAYLOAD_SIZE_64BIT
def _signal(self, signal, value=0, timestamp=False):
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *data64_le(mv_address(signal._signal)), *data64_le(value),
(1 << 0) | (1 << 20) | (1 << 24) | ((1 << 25) if timestamp else 0)] # RELEASE | RELEASE_WFI | PAYLOAD_SIZE_64BIT | RELEASE_TIMESTAMP
self.q += [nvmethod(0, nv_gpu.NVC56F_NON_STALL_INTERRUPT, 1), 0x0]
def _timestamp(self, signal): return NVCommandQueue._signal(self, signal, timestamp=True)
def _update_signal(self, cmd_idx, signal=None, value=None): return self._update_wait(cmd_idx, signal, value) # the same offsets and commands
def _update_wait(self, cmd_idx, signal=None, value=None):
if signal is not None: self.q[(sigoff:=self.cmds_offset[cmd_idx]+1):sigoff+2] = array.array('I', data64_le(mv_address(signal._signal)))
if value is not None: self.q[(valoff:=self.cmds_offset[cmd_idx]+3):valoff+2] = array.array('I', data64_le(value))
def bind(self, device: NVDevice):
self.binded_device = device
self.hw_page = device._gpu_alloc(len(self.q) * 4, map_to_cpu=True)
hw_view = to_mv(self.hw_page.va_addr, self.hw_page.size).cast("I")
for i, value in enumerate(self.q): hw_view[i] = value
# From now on, the queue is on the device for faster submission.
self.q = hw_view # type: ignore
def _submit_to_gpfifo(self, dev, gpfifo:GPFifo):
if len(self.q) == 0: return
if dev == self.binded_device: cmdq_addr = self.hw_page.va_addr
else:
if dev.cmdq_wptr + len(self.q) * 4 > dev.cmdq_page.size:
assert (gpfifo.ring[gpfifo.controls.GPGet] & 0xFFFFFFFFFC) >= dev.cmdq_page.va_addr + len(self.q) * 4 or \
gpfifo.controls.GPGet == gpfifo.controls.GPPut, "cmdq overrun"
dev.cmdq_wptr = 0
dev.cmdq[dev.cmdq_wptr//4:dev.cmdq_wptr//4+len(self.q)] = array.array('I', self.q)
cmdq_addr = dev.cmdq_page.va_addr+dev.cmdq_wptr
dev.cmdq_wptr += len(self.q) * 4
gpfifo.ring[gpfifo.put_value % gpfifo.entries_count] = (cmdq_addr//4 << 2) | (len(self.q) << 42) | (1 << 41)
gpfifo.controls.GPPut = (gpfifo.put_value + 1) % gpfifo.entries_count
dev.gpu_mmio[0x90 // 4] = gpfifo.token
gpfifo.put_value += 1
class NVComputeQueue(NVCommandQueue, HWComputeQueue):
def __init__(self):
self.cmd_idx_to_qmd, self.cmd_idx_to_global_dims, self.cmd_idx_to_local_dims = {}, {}, {}
super().__init__()
def _memory_barrier(self): self.q += [nvmethod(1, nv_gpu.NVC6C0_INVALIDATE_SHADER_CACHES_NO_WFI, 1), (1 << 12) | (1 << 4) | (1 << 0)]
def _exec(self, prg, kernargs, global_size, local_size):
cmd_idx = len(self) - 1
ctypes.memmove(qmd_addr:=(kernargs + round_up(prg.constbufs[0][1], 1 << 8)), ctypes.addressof(prg.qmd), 0x40 * 4)
self.cmd_idx_to_qmd[cmd_idx] = qmd = qmd_struct_t.from_address(qmd_addr) # Save qmd for later update
self.cmd_idx_to_global_dims[cmd_idx] = to_mv(qmd_addr + nv_gpu.NVC6C0_QMDV03_00_CTA_RASTER_WIDTH[1] // 8, 12).cast('I')
self.cmd_idx_to_local_dims[cmd_idx] = to_mv(qmd_addr + nv_gpu.NVC6C0_QMDV03_00_CTA_THREAD_DIMENSION0[1] // 8, 6).cast('H')
qmd.cta_raster_width, qmd.cta_raster_height, qmd.cta_raster_depth = global_size
qmd.cta_thread_dimension0, qmd.cta_thread_dimension1, qmd.cta_thread_dimension2 = local_size
qmd.constant_buffer_addr_upper_0, qmd.constant_buffer_addr_lower_0 = data64(kernargs)
if (prev_qmd:=self.cmd_idx_to_qmd.get(cmd_idx - 1)) is None:
self.q += [nvmethod(1, nv_gpu.NVC6C0_SEND_PCAS_A, 0x1), qmd_addr >> 8]
self.q += [nvmethod(1, nv_gpu.NVC6C0_SEND_SIGNALING_PCAS2_B, 0x1), 9]
else:
prev_qmd.dependent_qmd0_pointer = qmd_addr >> 8
prev_qmd.dependent_qmd0_action = 1
prev_qmd.dependent_qmd0_prefetch = 1
prev_qmd.dependent_qmd0_enable = 1
def _update_exec(self, cmd_idx, global_size, local_size):
# Patch the exec cmd with new launch dims
self.cmd_idx_to_global_dims[cmd_idx][:] = array.array('I', global_size)
self.cmd_idx_to_local_dims[cmd_idx][:] = array.array('H', local_size)
def _signal(self, signal, value=0):
if (prev_qmd:=self.cmd_idx_to_qmd.get(len(self) - 2)) is None or prev_qmd.release0_enable == 1: return super()._signal(signal, value)
prev_qmd.release0_address_upper, prev_qmd.release0_address_lower = data64(mv_address(signal._signal))
prev_qmd.release0_payload_upper, prev_qmd.release0_payload_lower = data64(value)
prev_qmd.release0_enable = 1
self.cmd_idx_to_qmd[len(self) - 1] = prev_qmd # this command is embedded into qmd.
def _update_signal(self, cmd_idx, signal=None, value=None):
if (qmd:=self.cmd_idx_to_qmd.get(cmd_idx)) is None: return super()._update_signal(cmd_idx, signal, value)
if signal is not None: qmd.release0_address_upper, qmd.release0_address_lower = data64(mv_address(signal._signal))
if value is not None: qmd.release0_payload_upper, qmd.release0_payload_lower = data64(value)
def _submit(self, device): self._submit_to_gpfifo(device, cast(NVDevice, device).compute_gpfifo)
class NVCopyQueue(NVCommandQueue, HWCopyQueue):
def _copy(self, dest, src, copy_size):
self.q += [nvmethod(4, nv_gpu.NVC6B5_OFFSET_IN_UPPER, 4), *data64(src), *data64(dest)]
self.q += [nvmethod(4, nv_gpu.NVC6B5_LINE_LENGTH_IN, 1), copy_size]
self.q += [nvmethod(4, nv_gpu.NVC6B5_LAUNCH_DMA, 1), 0x182] # TRANSFER_TYPE_NON_PIPELINED | DST_MEMORY_LAYOUT_PITCH | SRC_MEMORY_LAYOUT_PITCH
def _update_copy(self, cmd_idx, dest=None, src=None):
if dest is not None: self._patch(cmd_idx, offset=3, data=data64(dest))
if src is not None: self._patch(cmd_idx, offset=1, data=data64(src))
def _signal(self, signal, value=0):
self.q += [nvmethod(4, nv_gpu.NVC6B5_SET_SEMAPHORE_A, 4), *data64(mv_address(signal._signal)), value, 4]
self.q += [nvmethod(4, nv_gpu.NVC6B5_LAUNCH_DMA, 1), 0x14]
def _update_signal(self, cmd_idx, signal=None, value=None):
if signal is not None: self._patch(cmd_idx, offset=1, data=data64(mv_address(signal._signal)))
if value is not None: self._patch(cmd_idx, offset=3, data=[value])
def _submit(self, device): self._submit_to_gpfifo(device, cast(NVDevice, device).dma_gpfifo)
class NVProgram(HCQProgram):
def __init__(self, device:NVDevice, name:str, lib:bytes):
self.device, self.name, self.lib = device, name, lib
if DEBUG >= 6:
try:
fn = (pathlib.Path(tempfile.gettempdir()) / f"tinycuda_{hashlib.md5(lib).hexdigest()}").as_posix()
with open(fn + ".cubin", "wb") as f: f.write(lib)
print(subprocess.check_output(["nvdisasm", fn+".cubin"]).decode('utf-8'))
except Exception as e: print("failed to disasm cubin", str(e))
if MOCKGPU: image, sections, relocs = memoryview(bytearray(lib) + b'\x00' * (4 - len(lib)%4)).cast("I"), [], [] # type: ignore
else: image, sections, relocs = elf_loader(self.lib, force_section_align=128)
# NOTE: Ensure at least 4KB of space after the program to mitigate prefetch memory faults.
self.lib_gpu = self.device.allocator.alloc(round_up(image.nbytes, 0x1000) + 0x1000, BufferOptions(cpu_access=True))
self.program_addr, self.program_sz, self.registers_usage, self.shmem_usage = self.lib_gpu.va_addr, image.nbytes, 0, 0
self.constbufs: Dict[int, Tuple[int, int]] = {0: (0, 0x160)} # Dict[constbuf index, Tuple[va_addr, size]]
for sh in sections:
if sh.name == f".nv.shared.{self.name}": self.shmem_usage = sh.header.sh_size
if sh.name == f".text.{self.name}":
self.program_addr, self.program_sz, self.registers_usage = self.lib_gpu.va_addr+sh.header.sh_addr, sh.header.sh_size, sh.header.sh_info>>24
elif m:=re.match(r'\.nv\.constant(\d+)', sh.name): self.constbufs[int(m.group(1))] = (self.lib_gpu.va_addr+sh.header.sh_addr, sh.header.sh_size)
elif sh.name == ".nv.info":
for off in range(0, sh.header.sh_size, 12):
typ, _, val = struct.unpack_from("III", sh.content, off)
if typ & 0xffff == 0x1204: self.device._ensure_has_local_memory(val + 0x240)
# Apply relocs
for apply_image_offset, rel_sym_offset, typ, _ in relocs:
# These types are CUDA-specific, applying them here
if typ == 2: image[apply_image_offset:apply_image_offset+8] = struct.pack('<Q', self.lib_gpu.va_addr + rel_sym_offset) # R_CUDA_64
elif typ == 0x38: image[apply_image_offset+4:apply_image_offset+8] = struct.pack('<I', (self.lib_gpu.va_addr + rel_sym_offset) & 0xffffffff)
elif typ == 0x39: image[apply_image_offset+4:apply_image_offset+8] = struct.pack('<I', (self.lib_gpu.va_addr + rel_sym_offset) >> 32)
else: raise RuntimeError(f"unknown NV reloc {typ}")
ctypes.memmove(self.lib_gpu.va_addr, mv_address(image), image.nbytes)
self.constbuffer_0 = [0] * 88
self.constbuffer_0[6:12] = [*data64_le(self.device.shared_mem_window), *data64_le(self.device.local_mem_window), *data64_le(0xfffdc0)]
smem_config = min(shmem_conf * 1024 for shmem_conf in [32, 64, 100] if shmem_conf * 1024 >= self.shmem_usage) // 4096 + 1
self.qmd = qmd_struct_t(qmd_group_id=0x3f, sm_global_caching_enable=1, invalidate_texture_header_cache=1, invalidate_texture_sampler_cache=1,
invalidate_texture_data_cache=1, invalidate_shader_data_cache=1, api_visible_call_limit=1, sampler_index=1,
cwd_membar_type=nv_gpu.NVC6C0_QMDV03_00_CWD_MEMBAR_TYPE_L1_SYSMEMBAR, qmd_major_version=3, constant_buffer_invalidate_0=1,
shared_memory_size=max(0x400, round_up(self.shmem_usage, 0x100)), min_sm_config_shared_mem_size=smem_config,
max_sm_config_shared_mem_size=0x1a, register_count_v=self.registers_usage, target_sm_config_shared_mem_size=smem_config,
barrier_count=1, shader_local_memory_high_size=self.device.slm_per_thread, program_prefetch_size=self.program_sz>>8,
program_address_lower=self.program_addr&0xffffffff, program_address_upper=self.program_addr>>32, sass_version=0x89,
program_prefetch_addr_lower_shifted=self.program_addr>>8, program_prefetch_addr_upper_shifted=self.program_addr>>40)
for i,(addr,sz) in self.constbufs.items():
self.qmd.__setattr__(f'constant_buffer_addr_upper_{i}', (addr) >> 32)
self.qmd.__setattr__(f'constant_buffer_addr_lower_{i}', (addr) & 0xffffffff)
self.qmd.__setattr__(f'constant_buffer_size_shifted4_{i}', sz)
self.qmd.__setattr__(f'constant_buffer_valid_{i}', 1)
# Registers allocation granularity per warp is 256, warp allocaiton granularity is 4. Register file size is 65536.
self.max_threads = ((65536 // round_up(max(1, self.registers_usage) * 32, 256)) // 4) * 4 * 32
# NV's kernargs is constbuffer (size 0x160), then arguments to the kernel follows. Kernargs also appends QMD at the end of the kernel.
super().__init__(self.device, self.name, kernargs_alloc_size=round_up(self.constbufs[0][1], 1 << 8) + (8 << 8), kernargs_args_offset=0x160)
def __del__(self):
if hasattr(self, 'lib_gpu'): self.device.allocator.free(self.lib_gpu, self.lib_gpu.size, BufferOptions(cpu_access=True))
def _fill_kernargs(self, kernargs_ptr:int, bufs:Tuple[Any, ...], vals:Tuple[int, ...]=()):
# HACK: Save counts of args and vars to "unused" constbuffer for later extraction in mockgpu to pass into gpuocelot.
if MOCKGPU: self.constbuffer_0[0:2] = [len(bufs), len(vals)]
kernargs = [arg_half for arg in bufs for arg_half in data64_le(arg.va_addr)] + list(vals)
to_mv(kernargs_ptr, (len(self.constbuffer_0) + len(kernargs)) * 4).cast('I')[:] = array.array('I', self.constbuffer_0 + kernargs)
def __call__(self, *args, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
if prod(local_size) > 1024 or self.max_threads < prod(local_size): raise RuntimeError("Too many resources requsted for launch")
if any(cur > mx for cur,mx in zip(global_size, [2147483647, 65535, 65535])) or any(cur > mx for cur,mx in zip(local_size, [1024, 1024, 64])):
raise RuntimeError(f"Invalid global/local dims {global_size=}, {local_size=}")
return super().__call__(*args, global_size=global_size, local_size=local_size, vals=vals, wait=wait)
class NVAllocator(HCQAllocator):
def __init__(self, device:NVDevice): super().__init__(device)
def _alloc(self, size:int, options:BufferOptions) -> HCQBuffer:
if options.host: return self.device._gpu_host_alloc(size)
return self.device._gpu_alloc(size, map_to_cpu=options.cpu_access, huge_page=(size > (16 << 20)))
def _free(self, opaque, options:BufferOptions):
self.device.synchronize()
if options.host: self.device._gpu_host_free(opaque)
else: self.device._gpu_free(opaque)
def map(self, buf:HCQBuffer): self.device._gpu_map(buf._base if hasattr(buf, '_base') else buf)
@dataclass
class GPFifo:
ring: memoryview
controls: nv_gpu.AmpereAControlGPFifo
entries_count: int
token: int
put_value: int = 0
MAP_FIXED, MAP_NORESERVE = 0x10, 0x400
class NVDevice(HCQCompiled):
root = None
fd_ctl: int = -1
fd_uvm: int = -1
gpus_info:Union[List, ctypes.Array] = []
signals_page:Any = None
signals_pool: List[Any] = []
uvm_vaddr: int = 0x1000000000
host_object_enumerator: int = 0x1000
devices: List[NVDevice] = []
def _new_gpu_fd(self):
fd_dev = os.open(f"/dev/nvidia{self.gpu_info.deviceInstance}", os.O_RDWR | os.O_CLOEXEC)
nv_iowr(fd_dev, nv_gpu.NV_ESC_REGISTER_FD, nv_gpu.nv_ioctl_register_fd_t(ctl_fd=self.fd_ctl))
return fd_dev
def _gpu_map_to_cpu(self, memory_handle, size, target=None, flags=0, system=False):
fd_dev = self._new_gpu_fd() if not system else os.open("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
made = nv_gpu.nv_ioctl_nvos33_parameters_with_fd(fd=fd_dev,
params=nv_gpu.NVOS33_PARAMETERS(hClient=self.root, hDevice=self.device, hMemory=memory_handle, length=size, flags=flags))
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_MAP_MEMORY, made)
if made.params.status != 0: raise RuntimeError(f"_gpu_map_to_cpu returned {made.params.status}")
res = libc.mmap(target, size, mmap.PROT_READ|mmap.PROT_WRITE, mmap.MAP_SHARED | (MAP_FIXED if target is not None else 0), fd_dev, 0)
os.close(fd_dev)
return res
def _gpu_alloc(self, size:int, contig=False, huge_page=False, va_addr=None, map_to_cpu=False, map_flags=0):
size = round_up(size, align:=((2 << 20) if huge_page else (4 << 10)))
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, alignment=align, offset=0, limit=size-1, format=6, size=size,
attr=(((nv_gpu.NVOS32_ATTR_PAGE_SIZE_HUGE << 23) if huge_page else 0) |
((nv_gpu.NVOS32_ATTR_PHYSICALITY_CONTIGUOUS if contig else nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS) << 27)),
attr2=((nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC << 0) | (nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_YES << 2) |
((nv_gpu.NVOS32_ATTR2_PAGE_SIZE_HUGE_2MB << 20) if huge_page else 0)),
flags=(nv_gpu.NVOS32_ALLOC_FLAGS_ALIGNMENT_FORCE | nv_gpu.NVOS32_ALLOC_FLAGS_PERSISTENT_VIDMEM | nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED |
nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED))
mem_handle = rm_alloc(self.fd_ctl, nv_gpu.NV1_MEMORY_USER, self.root, self.device, alloc_params).hObjectNew
if va_addr is None: va_addr = self._alloc_gpu_vaddr(size, alignment=align)
if map_to_cpu: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags)
return self._gpu_uvm_map(va_addr, size, mem_handle)
def _gpu_system_alloc(self, size:int, va_addr=None, map_to_cpu=False, map_flags=0):
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, type=13,
attr=(nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS << 27) | (nv_gpu.NVOS32_ATTR_LOCATION_PCI << 25),
attr2=(nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC << 0) | (nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_NO << 2),
flags=(nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED |
nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED), format=6, size=size, alignment=(4<<10), offset=0, limit=size-1)
mem_handle = rm_alloc(self.fd_ctl, nv_gpu.NV1_MEMORY_SYSTEM, self.root, self.device, alloc_params).hObjectNew
if va_addr is None: va_addr = self._alloc_gpu_vaddr(size)
if map_to_cpu: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags, system=True)
return self._gpu_uvm_map(va_addr, size, mem_handle)
def _gpu_host_alloc(self, size):
va_base = self._alloc_gpu_vaddr(sz:=round_up(size, 4 << 10))
libc.mmap(va_base, sz, mmap.PROT_READ|mmap.PROT_WRITE, MAP_FIXED|mmap.MAP_SHARED|mmap.MAP_ANONYMOUS, -1, 0)
return self._map_to_gpu(va_base, sz)
def _gpu_free(self, mem):
made = nv_gpu.NVOS00_PARAMETERS(hRoot=self.root, hObjectParent=self.device, hObjectOld=mem.hMemory)
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_FREE, made)
if made.status != 0: raise RuntimeError(f"_gpu_free returned {made.status}")
uvm.free(self.fd_uvm, base=mem.va_addr, length=mem.size)
def _gpu_host_free(self, mem):
uvm.free(self.fd_uvm, base=mem.va_addr, length=mem.size)
libc.munmap(mem.va_addr, mem.size)
def _map_to_gpu(self, va_base, size):
NVDevice.host_object_enumerator += 1
flags = ((nv_gpu.NVOS02_FLAGS_PHYSICALITY_NONCONTIGUOUS << 4) | (nv_gpu.NVOS02_FLAGS_COHERENCY_CACHED << 12) |
(nv_gpu.NVOS02_FLAGS_MAPPING_NO_MAP << 30))
made = nv_gpu.nv_ioctl_nvos02_parameters_with_fd(params=nv_gpu.NVOS02_PARAMETERS(hRoot=self.root, hObjectParent=self.device, flags=flags,
hObjectNew=NVDevice.host_object_enumerator, hClass=nv_gpu.NV01_MEMORY_SYSTEM_OS_DESCRIPTOR, pMemory=va_base, limit=size-1), fd=-1)
nv_iowr(self.fd_dev, nv_gpu.NV_ESC_RM_ALLOC_MEMORY, made)
if made.params.status != 0: raise RuntimeError(f"_map_to_gpu returned {made.params.status}")
return self._gpu_uvm_map(va_base, size, made.params.hObjectNew)
def _gpu_uvm_map(self, va_base, size, mem_handle, create_range=True) -> nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS:
if create_range: uvm.create_external_range(self.fd_uvm, base=va_base, length=size)
gpu_attrs = (nv_gpu.struct_c__SA_UvmGpuMappingAttributes*256)(
nv_gpu.struct_c__SA_UvmGpuMappingAttributes(gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), gpuMappingType = 1))
# NOTE: va_addr is set to make rawbufs compatable with AMD.
return uvm.map_external_allocation(self.fd_uvm, base=va_base, length=size, rmCtrlFd=self.fd_ctl, hClient=self.root, hMemory=mem_handle,
gpuAttributesCount=1, perGpuAttributes=gpu_attrs, va_addr=va_base, size=size, mapped_gpu_ids=[self.gpu_uuid])
def _gpu_map(self, mem):
if self.gpu_uuid in mem.mapped_gpu_ids: return
mem.mapped_gpu_ids.append(self.gpu_uuid)
self._gpu_uvm_map(mem.va_addr, mem.size, mem.hMemory, create_range=False)
def _alloc_gpu_vaddr(self, size, alignment=(4 << 10)):
NVDevice.uvm_vaddr = (res_va:=round_up(NVDevice.uvm_vaddr, alignment)) + size
return res_va
def _setup_nvclasses(self):
clsinfo = rmctrl.gpu_get_classlist_v2(self.fd_ctl, self.root, self.device)
self.nvclasses = {clsinfo.classList[i] for i in range(clsinfo.numClasses)}
self.compute_class = next(clss for clss in [nv_gpu.ADA_COMPUTE_A, nv_gpu.AMPERE_COMPUTE_B] if clss in self.nvclasses)
def __init__(self, device:str=""):
if NVDevice.root is None:
NVDevice.fd_ctl = os.open("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
NVDevice.fd_uvm = os.open("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
fd_uvm_2 = os.open("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
NVDevice.root = rm_alloc(self.fd_ctl, nv_gpu.NV01_ROOT_CLIENT, 0, 0, None).hObjectNew
uvm.initialize(self.fd_uvm)
with contextlib.suppress(RuntimeError): uvm.mm_initialize(fd_uvm_2, uvmFd=self.fd_uvm) # this error is okay, CUDA hits it too
nv_iowr(NVDevice.fd_ctl, nv_gpu.NV_ESC_CARD_INFO, gpus_info:=(nv_gpu.nv_ioctl_card_info_t*64)())
visible_devices = [int(x) for x in (getenv('VISIBLE_DEVICES', getenv('CUDA_VISIBLE_DEVICES', ''))).split(',') if x.strip()]
NVDevice.gpus_info = [gpus_info[x] for x in visible_devices] if visible_devices else gpus_info
self.device_id = int(device.split(":")[1]) if ":" in device else 0
if self.device_id >= len(NVDevice.gpus_info) or not NVDevice.gpus_info[self.device_id].valid:
raise RuntimeError(f"No device found for {device}. Requesting more devices than the system has?")
self.gpu_info = rmctrl.gpu_get_id_info_v2(self.fd_ctl, self.root, self.root, gpuId=NVDevice.gpus_info[self.device_id].gpu_id)
self.fd_dev = self._new_gpu_fd()
device_params = nv_gpu.NV0080_ALLOC_PARAMETERS(deviceId=self.gpu_info.deviceInstance, hClientShare=self.root,
vaMode=nv_gpu.NV_DEVICE_ALLOCATION_VAMODE_MULTIPLE_VASPACES)
self.device = rm_alloc(self.fd_ctl, nv_gpu.NV01_DEVICE_0, self.root, self.root, device_params).hObjectNew
self.subdevice = rm_alloc(self.fd_ctl, nv_gpu.NV20_SUBDEVICE_0, self.root, self.device, None).hObjectNew
self.usermode = rm_alloc(self.fd_ctl, nv_gpu.TURING_USERMODE_A, self.root, self.subdevice, None).hObjectNew
self.gpu_mmio = to_mv(self._gpu_map_to_cpu(self.usermode, mmio_sz:=0x10000, flags=2), mmio_sz).cast("I")
self._setup_nvclasses()
rmctrl.perf_boost(self.fd_ctl, self.root, self.subdevice, duration=0xffffffff, flags=((nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_YES << 4) | \
(nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_PRIORITY_HIGH << 6) | (nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CMD_BOOST_TO_MAX << 0)))
vaspace_params = nv_gpu.NV_VASPACE_ALLOCATION_PARAMETERS(vaBase=0x1000, vaSize=0x1fffffb000000,
flags=nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_ENABLE_PAGE_FAULTING | nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_IS_EXTERNALLY_OWNED)
vaspace = rm_alloc(self.fd_ctl, nv_gpu.FERMI_VASPACE_A, self.root, self.device, vaspace_params).hObjectNew
raw_uuid = rmctrl.gpu_get_gid_info(self.fd_ctl, self.root, self.subdevice, flags=nv_gpu.NV2080_GPU_CMD_GPU_GET_GID_FLAGS_FORMAT_BINARY, length=16)
self.gpu_uuid = (ctypes.c_ubyte*16)(*[raw_uuid.data[i] for i in range(16)])
uvm.register_gpu(self.fd_uvm, rmCtrlFd=-1, gpu_uuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid))
uvm.register_gpu_vaspace(self.fd_uvm, gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), rmCtrlFd=self.fd_ctl,
hClient=self.root, hVaSpace=vaspace)
for dev in self.devices:
uvm.enable_peer_access(self.fd_uvm, gpuUuidA=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), gpuUuidB=nv_gpu.struct_nv_uuid(uuid=dev.gpu_uuid))
if NVDevice.signals_page is None:
NVDevice.signals_page = self._gpu_system_alloc(16 * 65536, map_to_cpu=True)
NVDevice.signals_pool = [to_mv(self.signals_page.va_addr + off, 16).cast("Q") for off in range(0, NVDevice.signals_page.size, 16)]
else: self._gpu_map(NVDevice.signals_page)
channel_params = nv_gpu.NV_CHANNEL_GROUP_ALLOCATION_PARAMETERS(engineType=nv_gpu.NV2080_ENGINE_TYPE_GRAPHICS)
channel_group = rm_alloc(self.fd_ctl, nv_gpu.KEPLER_CHANNEL_GROUP_A, self.root, self.device, channel_params).hObjectNew
gpfifo_area = self._gpu_alloc(0x200000, contig=True, huge_page=True, map_to_cpu=True, map_flags=0x10d0000)
ctxshare_params = nv_gpu.NV_CTXSHARE_ALLOCATION_PARAMETERS(hVASpace=vaspace, flags=nv_gpu.NV_CTXSHARE_ALLOCATION_FLAGS_SUBCONTEXT_ASYNC)
ctxshare = rm_alloc(self.fd_ctl, nv_gpu.FERMI_CONTEXT_SHARE_A, self.root, channel_group, ctxshare_params).hObjectNew
self.compute_gpfifo = self._new_gpu_fifo(gpfifo_area, ctxshare, channel_group, offset=0, entries=0x10000)
self.dma_gpfifo = self._new_gpu_fifo(gpfifo_area, ctxshare, channel_group, offset=0x100000, entries=0x10000)
rmctrl.gpfifo_schedule(self.fd_ctl, self.root, channel_group, bEnable=1)
self.cmdq_page: nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS = self._gpu_alloc(0x200000, map_to_cpu=True, huge_page=True)
self.cmdq: memoryview = to_mv(self.cmdq_page.va_addr, 0x200000).cast("I")
self.cmdq_wptr: int = 0 # in bytes
sm_info = nv_gpu.NV2080_CTRL_GR_INFO(index=nv_gpu.NV2080_CTRL_GR_INFO_INDEX_SM_VERSION)
rmctrl.gr_get_info(self.fd_ctl, self.root, self.subdevice, grInfoListSize=1, grInfoList=ctypes.addressof(sm_info))
self.arch: str = f"sm_{(sm_info.data>>8)&0xff}{(val>>4) if (val:=sm_info.data&0xff) > 0xf else val}"
compiler_t = (PTXCompiler if PTX else CUDACompiler) if MOCKGPU else (NVPTXCompiler if PTX else NVCompiler)
super().__init__(device, NVAllocator(self), PTXRenderer(self.arch, device="NV") if PTX else NVRenderer(self.arch), compiler_t(self.arch),
functools.partial(NVProgram, self), NVSignal, NVComputeQueue, NVCopyQueue, timeline_signals=(NVSignal(), NVSignal()))
self._setup_gpfifos()
NVDevice.devices.append(self)
def _new_gpu_fifo(self, gpfifo_area, ctxshare, channel_group, offset=0, entries=0x400) -> GPFifo:
notifier = self._gpu_system_alloc(48 << 20)
params = nv_gpu.NV_CHANNELGPFIFO_ALLOCATION_PARAMETERS(hObjectError=notifier.hMemory, hObjectBuffer=gpfifo_area.hMemory,
gpFifoOffset=gpfifo_area.va_addr+offset, gpFifoEntries=entries, hContextShare=ctxshare,
hUserdMemory=(ctypes.c_uint32*8)(gpfifo_area.hMemory), userdOffset=(ctypes.c_uint64*8)(entries*8+offset))
gpfifo = rm_alloc(self.fd_ctl, nv_gpu.AMPERE_CHANNEL_GPFIFO_A, self.root, channel_group, params).hObjectNew
rm_alloc(self.fd_ctl, self.compute_class, self.root, gpfifo, None)
rm_alloc(self.fd_ctl, nv_gpu.AMPERE_DMA_COPY_B, self.root, gpfifo, None)
ws_token_params = rmctrl.gpfifo_get_work_submit_token(self.fd_ctl, self.root, gpfifo, workSubmitToken=-1)
assert ws_token_params.workSubmitToken != -1
channel_base = self._alloc_gpu_vaddr(0x4000000)
uvm.register_channel(self.fd_uvm, gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), rmCtrlFd=self.fd_ctl, hClient=self.root,
hChannel=gpfifo, base=channel_base, length=0x4000000)
return GPFifo(ring=to_mv(gpfifo_area.va_addr + offset, entries * 8).cast("Q"), entries_count=entries, token=ws_token_params.workSubmitToken,
controls=nv_gpu.AmpereAControlGPFifo.from_address(gpfifo_area.va_addr + offset + entries * 8))
def _setup_gpfifos(self):
# Set windows addresses to not collide with other allocated buffers.
self.shared_mem_window, self.local_mem_window, self.slm_per_thread = 0xfe000000, 0xff000000, 0
NVComputeQueue().setup(compute_class=self.compute_class, local_mem_window=self.local_mem_window, shared_mem_window=self.shared_mem_window) \
.signal(self.timeline_signal, self.timeline_value).submit(self)
NVCopyQueue().wait(self.timeline_signal, self.timeline_value) \
.setup(copy_class=nv_gpu.AMPERE_DMA_COPY_B) \
.signal(self.timeline_signal, self.timeline_value + 1).submit(self)
self.timeline_value += 2
def _ensure_has_local_memory(self, required):
if self.slm_per_thread >= required: return
self.synchronize()
if hasattr(self, 'shader_local_mem'): self._gpu_free(self.shader_local_mem) # type: ignore # pylint: disable=access-member-before-definition
self.slm_per_thread = round_up(required, 32)
bytes_per_warp = round_up(self.slm_per_thread * 32, 0x200)
bytes_per_tpc = round_up(bytes_per_warp * 48 * 2, 0x8000)
self.shader_local_mem = self._gpu_alloc(round_up(bytes_per_tpc * 64, 0x20000), huge_page=True, contig=True)
NVComputeQueue().setup(local_mem=self.shader_local_mem.va_addr, local_mem_tpc_bytes=bytes_per_tpc) \
.signal(self.timeline_signal, self.timeline_value).submit(self)
self.timeline_value += 1
def invalidate_caches(self):
rmctrl.fb_flush_gpu_cache(self.fd_ctl, self.root, self.subdevice,
flags=((nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_WRITE_BACK_YES << 2) | (nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_INVALIDATE_YES << 3) |
(nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_FLUSH_MODE_FULL_CACHE << 4)))