Files
tinygrad/examples/webgpu/stable_diffusion/f16_to_f32.js
Ahmed Harmouche 265304e7fd Stable diffusion WebGPU port (#1370)
* WIP: Stable diffusion WebGPU port

* Load whole model: split safetensor to avoid Chrome allocation limit

* Gitignore .DS_Store, remove debug print

* Clip tokenizer in JS

* WIP: Compile model in parts (text model, diffusor, get_x_prev_and_pred_x0, decoder), and recreate forward logic in JS

* e2e stable diffusion flow

* Create initial random latent tensor in JS

* SD working e2e

* Log if some weights were not loaded properly

* Remove latent_tensor.npy used for debugging

* Cleanup, remove useless logs

* Improve UI

* Add progress bar

* Remove .npy files used for debugging

* Add clip tokenizer as external dependency

* Remove alphas_cumprod.js and load it from safetensors

* Refactor

* Simplify a lot

* Dedup base when limiting elementwise merge (webgpu)

* Add return type to safe_load_metadata

* Do not allow run when webgpu is not supported

* Add progress bar, refactor, fix special names

* Add option to chose from local vs huggingface weights

* lowercase tinygrad :)

* fp16 model dl, decompression client side

* Cache f16 model in browser, better progress

* Cache miss recovery

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2023-11-03 18:29:16 -07:00

65 lines
2.6 KiB
JavaScript

const f16tof32 = `
fn u16_to_f16(x: u32) -> f32 {
let sign = f32((x >> 15) & 0x1);
let exponent = f32((x >> 10) & 0x1F);
let fraction = f32(x & 0x3FF);
let sign_multiplier = select(1.0, -1.0, sign == 1.0);
if (exponent == 0.0) {
return sign_multiplier * 6.103515625e-5 * (fraction / 1024.0);
} else {
return sign_multiplier * exp2(exponent - 15.0) * (1.0 + fraction / 1024.0);
}
}
@group(0) @binding(0) var<storage,read_write> data0: array<u32>;
@group(0) @binding(1) var<storage,read_write> data1: array<f32>;
@compute @workgroup_size(256) fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
let gidx = gid.x;
let outgidx = gidx*2;
if (gidx >= arrayLength(&data0)) {
return;
}
let oo = data0[gidx];
let oo1 = (oo >> 16);
let oo2 = oo & 0xFFFFu;
let f1 = u16_to_f16(oo2);
let f2 = u16_to_f16(oo1);
data1[outgidx] = f1;
data1[outgidx + 1] = f2;
}`;
window.f16tof32GPU = async(device, inf16) => {
const input = device.createBuffer({size: inf16.length, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST });
const output = device.createBuffer({size: inf16.length*2, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST });
const gpuWriteBuffer = device.createBuffer({size: input.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE });
const gpuReadBuffer = device.createBuffer({ size: output.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ });
const commandEncoder = device.createCommandEncoder();
await gpuWriteBuffer.mapAsync(GPUMapMode.WRITE);
const alignedUint32View = new Uint32Array(inf16.buffer, inf16.byteOffset, inf16.length / 4);
new Uint32Array(gpuWriteBuffer.getMappedRange()).set(alignedUint32View);
gpuWriteBuffer.unmap();
commandEncoder.copyBufferToBuffer(gpuWriteBuffer, 0, input, 0, gpuWriteBuffer.size);
const pipeline = await device.createComputePipelineAsync({layout: "auto", compute: { module: device.createShaderModule({ code: f16tof32 }), entryPoint: "main" }});
addComputePass(device, commandEncoder, pipeline, [input, output], [Math.ceil(inf16.length/(4*256)), 1, 1]);
commandEncoder.copyBufferToBuffer(output, 0, gpuReadBuffer, 0, output.size);
const gpuCommands = commandEncoder.finish();
device.queue.submit([gpuCommands]);
await gpuReadBuffer.mapAsync(GPUMapMode.READ);
const resultBuffer = new Float32Array(gpuReadBuffer.size/4);
resultBuffer.set(new Float32Array(gpuReadBuffer.getMappedRange()));
gpuReadBuffer.unmap();
return resultBuffer;
}