mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-24 14:28:09 -05:00
* Fix OpenCL Metal texture issues Tile CL images when needed, to fit into the 16384 max Metal image size; gets me to ~4.8s/iteration for SD on M1 Pro with OPENCL=1 FLOAT16=1. * Minor cleanup * Fix mish in CI, or no-op? * Is mish being framed? * It would help if any of this reproduced locally * ??? * OPT is reverted; use original mish * Cleanup post-review * Fix some shape usage * Tiler tests, shouldn't oom or overflow either * Can't CL if there's no CL? * Run tiler tests even if GPU=1 * relu6 segfault binary chop; revert test * relu6 segfault binary chop; revert accel * relu6 segfault binary chop; revert . (???) * end relu6 segfault binary chop; repo's haunted
155 lines
5.7 KiB
Common Lisp
155 lines
5.7 KiB
Common Lisp
//PREFIX
|
|
|
|
__kernel void image_conv(
|
|
write_only image2d_t output,
|
|
read_only image2d_t input,
|
|
read_only image2d_t weights
|
|
#ifndef NOARGS
|
|
,short numPackedInputChannelsForGroup,
|
|
short totalNumPackedInputChannels,
|
|
short numPackedOutputChannelsForGroup,
|
|
short totalNumPackedOutputChannels,
|
|
short numOutputColumns,
|
|
short numOutputRows, short numInputRows
|
|
#endif
|
|
/*short filterSizeX, short filterSizeY,
|
|
short paddingX, short paddingY,
|
|
short strideX, short strideY,
|
|
short dilationX, short dilationY*/
|
|
//ARGS
|
|
) {
|
|
|
|
//SHORTS
|
|
|
|
const sampler_t smp = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
|
|
|
float4 outputValues[NUM_OUTPUTS];
|
|
for (short i = 0; i < NUM_OUTPUTS; ++i) {
|
|
outputValues[i] = (float4)(0, 0, 0, 0);
|
|
}
|
|
|
|
short packedOutputChannel = get_global_id(0);
|
|
int2 weightLocation;
|
|
weightLocation.x = 0;
|
|
weightLocation.y = packedOutputChannel;
|
|
|
|
short groupNum = (packedOutputChannel / numPackedOutputChannelsForGroup);
|
|
short startPackedInputChannel = mul24(groupNum, numPackedInputChannelsForGroup);
|
|
short startOutputColumn = mul24((short)get_global_id(1), NUM_OUTPUTS);
|
|
short startX = mad24(mad24(startOutputColumn, strideX, -paddingX), totalNumPackedInputChannels, startPackedInputChannel);
|
|
short strideWithChannels = mul24(strideX, totalNumPackedInputChannels);
|
|
|
|
int outputRow = get_global_id(2);
|
|
int2 inputLocation;
|
|
|
|
#ifdef BATCH
|
|
// TODO: this doesn't work with y padding
|
|
inputLocation.y = mad24(outputRow % numOutputRows, strideY, -paddingY);
|
|
int batchOffset = (outputRow / numOutputRows) * numInputRows;
|
|
inputLocation.y += batchOffset;
|
|
#else
|
|
inputLocation.y = mad24(outputRow, strideY, -paddingY);
|
|
#endif
|
|
|
|
#ifdef DEPTHWISE_UNSTRIDED
|
|
for (short rfRow = 0; rfRow < filterSizeY; ++rfRow) {
|
|
float4 inputValues[4];
|
|
inputLocation.x = startX;
|
|
for (short i = 1; i < 4; ++i) {
|
|
inputValues[i] = read_imagef(input, smp, INPUT_LOCATION);
|
|
inputLocation.x += totalNumPackedOutputChannels;
|
|
}
|
|
for (short rfColumn = 0; rfColumn < filterSizeX; ++rfColumn) {
|
|
inputValues[0] = inputValues[1];
|
|
inputValues[1] = inputValues[2];
|
|
inputValues[2] = inputValues[3];
|
|
inputValues[3] = read_imagef(input, smp, INPUT_LOCATION);
|
|
inputLocation.x += totalNumPackedInputChannels;
|
|
float4 weightValues = read_imagef(weights, smp, WEIGHT_LOCATION);
|
|
++weightLocation.x;
|
|
outputValues[0] += inputValues[0] * weightValues;
|
|
outputValues[1] += inputValues[1] * weightValues;
|
|
outputValues[2] += inputValues[2] * weightValues;
|
|
outputValues[3] += inputValues[3] * weightValues;
|
|
}
|
|
++inputLocation.y;
|
|
}
|
|
#else
|
|
|
|
for (short rfRow = 0; rfRow < filterSizeY; ++rfRow) {
|
|
// numPackedInputChannelsForGroup is 1 in depthwise
|
|
for (short packedInputChannel = 0; packedInputChannel < numPackedInputChannelsForGroup; ++packedInputChannel) {
|
|
short startXForChannel = startX + packedInputChannel;
|
|
for (short rfColumn = 0; rfColumn < filterSizeX; ++rfColumn) {
|
|
|
|
short dilatedStepX = mul24(totalNumPackedInputChannels, dilationX);
|
|
inputLocation.x = mad24(rfColumn, dilatedStepX, startXForChannel);
|
|
float4 inputValues[NUM_OUTPUTS];
|
|
for (short i = 0; i < NUM_OUTPUTS; ++i) {
|
|
inputValues[i] = read_imagef(input, smp, INPUT_LOCATION);
|
|
inputLocation.x += strideWithChannels;
|
|
}
|
|
|
|
#ifdef DEPTHWISE
|
|
float4 weightValues = read_imagef(weights, smp, WEIGHT_LOCATION);
|
|
++weightLocation.x;
|
|
for (short i = 0; i < NUM_OUTPUTS; ++i) {
|
|
outputValues[i] += inputValues[i] * weightValues;
|
|
}
|
|
#else
|
|
float4 weightValues[4];
|
|
for (short outChIdx = 0; outChIdx < 4; ++outChIdx) {
|
|
weightValues[outChIdx] = read_imagef(weights, smp, WEIGHT_LOCATION);
|
|
++weightLocation.x;
|
|
}
|
|
|
|
for (short i = 0; i < NUM_OUTPUTS; ++i) {
|
|
// this is marginally faster than using dot
|
|
float4 curOutputValues = outputValues[i];
|
|
curOutputValues.x += inputValues[i].x * weightValues[0].x;
|
|
curOutputValues.x += inputValues[i].y * weightValues[0].y;
|
|
curOutputValues.x += inputValues[i].z * weightValues[0].z;
|
|
curOutputValues.x += inputValues[i].w * weightValues[0].w;
|
|
curOutputValues.y += inputValues[i].x * weightValues[1].x;
|
|
curOutputValues.y += inputValues[i].y * weightValues[1].y;
|
|
curOutputValues.y += inputValues[i].z * weightValues[1].z;
|
|
curOutputValues.y += inputValues[i].w * weightValues[1].w;
|
|
curOutputValues.z += inputValues[i].x * weightValues[2].x;
|
|
curOutputValues.z += inputValues[i].y * weightValues[2].y;
|
|
curOutputValues.z += inputValues[i].z * weightValues[2].z;
|
|
curOutputValues.z += inputValues[i].w * weightValues[2].w;
|
|
curOutputValues.w += inputValues[i].x * weightValues[3].x;
|
|
curOutputValues.w += inputValues[i].y * weightValues[3].y;
|
|
curOutputValues.w += inputValues[i].z * weightValues[3].z;
|
|
curOutputValues.w += inputValues[i].w * weightValues[3].w;
|
|
outputValues[i] = curOutputValues;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
inputLocation.y += dilationY;
|
|
}
|
|
#endif
|
|
|
|
int2 outputLocation;
|
|
outputLocation.y = outputRow;
|
|
|
|
// do binops
|
|
short outputColumn = startOutputColumn;
|
|
for (short i = 0; i < NUM_OUTPUTS; ++i) {
|
|
outputLocation.x = mad24(outputColumn, totalNumPackedOutputChannels, packedOutputChannel);
|
|
//BINOP
|
|
++outputColumn;
|
|
}
|
|
|
|
// output to memory
|
|
outputColumn = startOutputColumn;
|
|
for (short i = 0; i < NUM_OUTPUTS; ++i) {
|
|
outputLocation.x = mad24(outputColumn, totalNumPackedOutputChannels, packedOutputChannel);
|
|
if (outputColumn < numOutputColumns) {
|
|
write_imagef(output, OUTPUT_LOCATION, outputValues[i]);
|
|
}
|
|
++outputColumn;
|
|
}
|
|
}
|