Files
tinygrad/examples/hlb_cifar10.py
2023-08-26 20:15:54 -04:00

372 lines
14 KiB
Python

#!/usr/bin/env python3
# setup for distributed
from extra import dist
from tinygrad.helpers import getenv
if __name__ == "__main__":
if getenv("DIST"):
dist.preinit()
# tinygrad implementation of https://github.com/tysam-code/hlb-CIFAR10/blob/main/main.py
# https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/
# https://siboehm.com/articles/22/CUDA-MMM
import time
import random
import numpy as np
from extra.datasets import fetch_cifar, cifar_mean, cifar_std
from tinygrad import nn
from tinygrad.nn.state import get_state_dict
from tinygrad.nn import optim
from tinygrad.ops import Device
from tinygrad.tensor import Tensor
from tinygrad.ops import GlobalCounters
from extra.lr_scheduler import OneCycleLR
from tinygrad.jit import TinyJit
from extra.dist import collectives
BS, EVAL_BS, STEPS = getenv("BS", 512), getenv('EVAL_BS', 500), getenv("STEPS", 1000)
# hyper-parameters were exactly the same as the original repo
bias_scaler = 56
hyp = {
'opt': {
'bias_lr': 1.64 * bias_scaler/512,
'non_bias_lr': 1.64 / 512,
'bias_decay': 1.08 * 6.45e-4 * BS/bias_scaler,
'non_bias_decay': 1.08 * 6.45e-4 * BS,
'momentum': 0.85,
'percent_start': 0.25,
'scaling_factor': 1./9,
'loss_scale_scaler': 1./512, # (range: ~1/512 - 16+) was 1/128 from original repo w/ FP16
},
'net': {
'kernel_size': 2, # kernel size for the whitening layer
'batch_norm_momentum': .5,
'cutmix_size': 3,
'cutmix_steps': 490, # different from original repo which used epoch > 12.1 - 6 which is roughly 7*98=686 STEPS
'pad_amount': 2
}
}
def set_seed(seed):
Tensor.manual_seed(getenv('SEED', seed)) # Deterministic
random.seed(getenv('SEED', seed))
# ========== Model ==========
def whitening(X, kernel_size=hyp['net']['kernel_size']):
def _cov(X):
X = X/np.sqrt(X.shape[0] - 1)
return X.T @ X
def _patches(data, patch_size=(kernel_size,kernel_size)):
h, w = patch_size
c = data.shape[1]
return np.lib.stride_tricks.sliding_window_view(data, window_shape=(h,w), axis=(2,3)).transpose((0,3,2,1,4,5)).reshape((-1,c,h,w))
def _eigens(patches):
n,c,h,w = patches.shape
Σ = _cov(patches.reshape(n, c*h*w))
Λ, V = np.linalg.eigh(Σ, UPLO='U')
return np.flip(Λ, 0), np.flip(V.T.reshape(c*h*w, c, h, w), 0)
Λ, V = _eigens(_patches(X.numpy()))
return Tensor(V/np.sqrt(Λ+1e-2)[:,None,None,None], requires_grad=False)
class BatchNorm(nn.BatchNorm2d):
def __init__(self, num_features):
super().__init__(num_features, track_running_stats=False, eps=1e-12, momentum=hyp['net']['batch_norm_momentum'], affine=True)
self.weight.requires_grad = False
self.bias.requires_grad = True
class ConvGroup:
def __init__(self, channels_in, channels_out):
self.conv1 = nn.Conv2d(channels_in, channels_out, kernel_size=3, padding=1, bias=False)
self.conv2 = nn.Conv2d(channels_out, channels_out, kernel_size=3, padding=1, bias=False)
self.norm1 = BatchNorm(channels_out)
self.norm2 = BatchNorm(channels_out)
def __call__(self, x):
x = self.conv1(x)
x = x.max_pool2d(2)
x = self.norm1(x)
x = x.gelu()
residual = x
x = self.conv2(x)
x = self.norm2(x)
x = x.gelu()
return x + residual
class SpeedyResNet:
def __init__(self, W):
self.whitening = W
self.net = [
nn.Conv2d(12, 32, kernel_size=1, bias=False),
lambda x: x.gelu(),
ConvGroup(32, 64),
ConvGroup(64, 256),
ConvGroup(256, 512),
lambda x: x.max((2,3)),
nn.Linear(512, 10, bias=False),
lambda x: x.mul(hyp['opt']['scaling_factor'])
]
def __call__(self, x, training=True):
# pad to 32x32 because whitening conv creates 31x31 images that are awfully slow to compute with
forward = lambda x: x.conv2d(self.whitening).pad2d((1,0,0,1)).sequential(self.net)
return forward(x) if training else forward(x)*0.5 + forward(x[..., ::-1])*0.5
# ========== Loss ==========
def cross_entropy(x:Tensor, y:Tensor, reduction:str='mean', label_smoothing:float=0.0) -> Tensor:
y = (1 - label_smoothing)*y + label_smoothing / y.shape[1]
if reduction=='none': return -x.log_softmax(axis=1).mul(y).sum(axis=1)
if reduction=='sum': return -x.log_softmax(axis=1).mul(y).sum(axis=1).sum()
return -x.log_softmax(axis=1).mul(y).sum(axis=1).mean()
# ========== Preprocessing ==========
# TODO currently this only works for RGB in format of NxCxHxW and pads the HxW
# implemented in recursive fashion but figuring out how to switch indexing dim
# during the loop was a bit tricky
def pad_reflect(X, size=2) -> Tensor:
padding = ((0,0),(0,0),(size,size),(size,size))
p = padding[3]
s = X.shape[3]
X_lr = X[...,:,1:1+p[0]].flip(3).pad(((0,0),(0,0),(0,0),(0,s+p[0]))) + X[...,:,-1-p[1]:-1].flip(3).pad(((0,0),(0,0),(0,0),(s+p[1],0)))
X = X.pad(((0,0),(0,0),(0,0),p)) + X_lr
p = padding[2]
s = X.shape[2]
X_lr = X[...,1:1+p[0],:].flip(2).pad(((0,0),(0,0),(0,s+p[0]),(0,0))) + X[...,-1-p[1]:-1,:].flip(2).pad(((0,0),(0,0),(s+p[1],0),(0,0)))
X = X.pad(((0,0),(0,0),p,(0,0))) + X_lr
return X
# return a binary mask in the format of BS x C x H x W where H x W contains a random square mask
def make_square_mask(shape, mask_size):
is_even = int(mask_size % 2 == 0)
center_max = shape[-2]-mask_size//2-is_even
center_min = mask_size//2-is_even
center = Tensor.rand(shape[0])*(center_max-center_min)+center_min
d_y = Tensor.arange(0, shape[-2]).reshape((1,1,shape[-2],1))
d_x = Tensor.arange(0, shape[-1]).reshape((1,1,1,shape[-1]))
d_y = d_y - center.reshape((-1,1,1,1))
d_x = d_x - center.reshape((-1,1,1,1))
d_y =(d_y >= -(mask_size / 2)) * (d_y <= mask_size / 2)
d_x =(d_x >= -(mask_size / 2)) * (d_x <= mask_size / 2)
mask = d_y * d_x
return mask
def random_crop(X, crop_size=32):
mask = make_square_mask(X.shape, crop_size)
mask = mask.repeat((1,3,1,1))
X_cropped = Tensor(X.flatten().numpy()[mask.flatten().numpy().astype(bool)])
return X_cropped.reshape((-1, 3, crop_size, crop_size))
def cutmix(X, Y, mask_size=3):
# fill the square with randomly selected images from the same batch
mask = make_square_mask(X.shape, mask_size)
order = list(range(0, X.shape[0]))
random.shuffle(order)
X_patch = Tensor(X.numpy()[order,...])
Y_patch = Tensor(Y.numpy()[order])
X_cutmix = Tensor.where(mask, X_patch, X)
mix_portion = float(mask_size**2)/(X.shape[-2]*X.shape[-1])
Y_cutmix = mix_portion * Y_patch + (1. - mix_portion) * Y
return X_cutmix, Y_cutmix
# the operations that remain inside batch fetcher is the ones that involves random operations
def fetch_batches(X_in, Y_in, BS, seed, is_train):
step = 0
while True:
set_seed(seed)
X, Y = X_in, Y_in
order = list(range(0, X.shape[0]))
random.shuffle(order)
if is_train:
X = random_crop(X, crop_size=32)
X = Tensor.where(Tensor.rand(X.shape[0],1,1,1) < 0.5, X[..., ::-1], X) # flip LR
if step >= hyp['net']['cutmix_steps']: X, Y = cutmix(X, Y, mask_size=hyp['net']['cutmix_size'])
X, Y = X.numpy(), Y.numpy()
for i in range(0, X.shape[0], BS):
# pad the last batch
batch_end = min(i+BS, Y.shape[0])
x = Tensor(X[order[batch_end-BS:batch_end],:])
y = Tensor(Y[order[batch_end-BS:batch_end]])
step += 1
yield x, y
if not is_train: break
seed += 1
transform = [
lambda x: x / 255.0,
lambda x: (x - Tensor(cifar_mean).repeat((1024,1)).T.reshape(1,-1))/ Tensor(cifar_std).repeat((1024,1)).T.reshape(1,-1),
lambda x: x.reshape((-1,3,32,32))
]
def train_cifar(bs=BS, eval_bs=EVAL_BS, steps=STEPS, seed=32):
# this import needs to be done here because this is running in a subprocess
from extra.dist import OOB
set_seed(seed)
Tensor.training = True
rank, world_size = getenv("RANK"), getenv("WORLD_SIZE", 1)
X_train, Y_train, X_test, Y_test = fetch_cifar()
# load data and label into GPU and convert to dtype accordingly
X_train, X_test = X_train.to(device=Device.DEFAULT).float(), X_test.to(device=Device.DEFAULT).float()
Y_train, Y_test = Y_train.to(device=Device.DEFAULT).float(), Y_test.to(device=Device.DEFAULT).float()
# one-hot encode labels
Y_train, Y_test = Tensor.eye(10)[Y_train], Tensor.eye(10)[Y_test]
# preprocess data
X_train, X_test = X_train.sequential(transform), X_test.sequential(transform)
# precompute whitening patches
W = whitening(X_train)
# padding is not timed in the original repo since it can be done all at once
X_train = pad_reflect(X_train, size=hyp['net']['pad_amount'])
model = SpeedyResNet(W)
# parse the training params into bias and non-bias
params_dict = get_state_dict(model)
params_bias = []
params_non_bias = []
for params in params_dict:
if params_dict[params].requires_grad is not False:
if 'bias' in params:
params_bias.append(params_dict[params])
else:
params_non_bias.append(params_dict[params])
opt_bias = optim.SGD(params_bias, lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['bias_decay'])
opt_non_bias = optim.SGD(params_non_bias, lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['non_bias_decay'])
# NOTE taken from the hlb_CIFAR repository, might need to be tuned
initial_div_factor = 1e16
final_lr_ratio = 0.02199
pct_start = hyp['opt']['percent_start']
lr_sched_bias = OneCycleLR(opt_bias, max_lr=hyp['opt']['bias_lr'] ,pct_start=pct_start, div_factor=initial_div_factor, final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=STEPS)
lr_sched_non_bias = OneCycleLR(opt_non_bias, max_lr=hyp['opt']['non_bias_lr'] ,pct_start=pct_start, div_factor=initial_div_factor, final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=STEPS)
loss_batchsize_scaler = 512/BS
@TinyJit
def train_step_jitted(model, optimizer, lr_scheduler, X, Y):
out = model(X)
loss = cross_entropy(out, Y, reduction='none' ,label_smoothing=0.2).mul(hyp['opt']['loss_scale_scaler']*loss_batchsize_scaler).sum().div(hyp['opt']['loss_scale_scaler'])
if not getenv("DISABLE_BACKWARD"):
# index 0 for bias and 1 for non-bias
optimizer[0].zero_grad()
optimizer[1].zero_grad()
loss.backward()
if getenv("DIST"):
# sync gradients across ranks
bucket, offset = [], 0
for _, v in params_dict.items():
if v.grad is not None: bucket.append(v.grad.flatten())
grads = collectives.allreduce(Tensor.cat(*bucket), cache_id="grads")
for _, v in params_dict.items():
if v.grad is not None:
v.grad.assign(grads[offset:offset+v.grad.numel()].reshape(*v.grad.shape))
offset += v.grad.numel()
optimizer[0].step()
optimizer[1].step()
lr_scheduler[0].step()
lr_scheduler[1].step()
return loss.realize()
@TinyJit
def eval_step_jitted(model, X, Y):
out = model(X, training=False)
loss = cross_entropy(out, Y, reduction='mean')
correct = out.argmax(axis=1) == Y.argmax(axis=1)
return correct.realize(), loss.realize()
# 97 steps in 2 seconds = 20ms / step Tensor.training = True
# step is 1163.42 GOPS = 56 TFLOPS!!!, 41% of max 136
# 4 seconds for tfloat32 ~ 28 TFLOPS, 41% of max 68
# 6.4 seconds for float32 ~ 17 TFLOPS, 50% of max 34.1
# 4.7 seconds for float32 w/o channels last. 24 TFLOPS. we get 50ms then i'll be happy. only 64x off
# https://www.anandtech.com/show/16727/nvidia-announces-geforce-rtx-3080-ti-3070-ti-upgraded-cards-coming-in-june
# 136 TFLOPS is the theoretical max w float16 on 3080 Ti
best_eval = -1
i = 0
batcher = fetch_batches(X_train, Y_train, BS=BS, seed=seed, is_train=True)
while i <= STEPS:
if i%100 == 0 and i > 1:
# Use Tensor.training = False here actually bricks batchnorm, even with track_running_stats=True
corrects = []
losses = []
for Xt, Yt in fetch_batches(X_test, Y_test, BS=EVAL_BS, seed=seed, is_train=False):
# further split batch if distributed
if getenv("DIST"):
Xt, Yt = Xt.chunk(min(world_size, 5), 0)[min(rank, 4)], Yt.chunk(min(world_size, 5), 0)[min(rank, 4)]
correct, loss = eval_step_jitted(model, Xt, Yt)
losses.append(loss.numpy().tolist())
corrects.extend(correct.numpy().tolist())
# collect accuracy across ranks
correct_sum, correct_len = sum(corrects), len(corrects)
if getenv("DIST"):
if rank == 0:
for j in range(1, min(world_size, 5)):
recv_sum, recv_len = OOB.recv(j)
correct_sum += recv_sum
correct_len += recv_len
elif rank < min(world_size, 5):
OOB.send((correct_sum, correct_len), 0)
# only rank 0 prints
if rank == 0:
acc = correct_sum/correct_len*100.0
if acc > best_eval:
best_eval = acc
print(f"eval {correct_sum}/{correct_len} {acc:.2f}%, {(sum(losses)/len(losses)):7.2f} val_loss STEP={i}")
if STEPS == 0 or i==STEPS: break
X, Y = next(batcher)
# further split batch if distributed
if getenv("DIST"):
X, Y = X.chunk(world_size, 0)[rank], Y.chunk(world_size, 0)[rank]
GlobalCounters.reset()
st = time.monotonic()
loss = train_step_jitted(model, [opt_bias, opt_non_bias], [lr_sched_bias, lr_sched_non_bias], X, Y)
et = time.monotonic()
loss_cpu = loss.numpy()
cl = time.monotonic()
print(f"{i:3d} {(cl-st)*1000.0:7.2f} ms run, {(et-st)*1000.0:7.2f} ms python, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {opt_non_bias.lr.numpy()[0]:.6f} LR, {GlobalCounters.mem_used/1e9:.2f} GB used, {GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS")
i += 1
if __name__ == "__main__":
if not getenv("DIST"):
train_cifar()
else: # distributed
from tinygrad.runtime.ops_gpu import CL
devices = [f"gpu:{i}" for i in range(len(CL.devices))]
world_size = len(devices)
# ensure that the batch size is divisible by the number of devices
assert BS % world_size == 0, f"batch size {BS} is not divisible by world size {world_size}"
# ensure that the evaluation batch size is divisible by the number of devices
assert EVAL_BS % min(world_size, 5) == 0, f"evaluation batch size {EVAL_BS} is not divisible by world size {min(world_size, 5)}"
# init out-of-band communication
dist.init_oob(world_size)
# start the processes
processes = []
for rank, device in enumerate(devices):
processes.append(dist.spawn(rank, device, fn=train_cifar, args=()))
for p in processes: p.join()