Oblivious Linear Evaluation (OLE) flavors from random OT
Here we sum up different OLE flavors, where some of them are needed for subprotocols of
TLSNotary. All mentioned OLE protocol flavors are implementations with errors, i.e. in the
presence of a malicious adversary, he can introduce additive errors to the result. This means
correctness is not guaranteed, but privacy is.

Functionality F ot
Note: In the literature there are different flavors of random OT, depending on if the receiver
can choose his input or not. Here we that assume the receiver has a choice.

Define the functionality F gqr:
+ The sender P, receives the random tuple (¢, t; ), where ¢, t; are x-bit messages.
+ The receiver Py inputs a bit « and receives the corresponding ¢,,.

Random OLE

Functionality 5 o1

Define the functionality # oy Which maintains a counter £ and which allows to call an
Extend,; command multiple times.

« When calling Initialize set up the functionality for subsequent calls to Extend,,.

« When calling Extend,: P4 receives (ay, x;) and Py receives (b, yy)-

such that y,, = a;, - b, +

Protocol Il 5

1. Initialization:
 Pp randomly samples f < F.
« Both parties call Fzo7(f), so Py knows t}, i and Py knows ty..
« With some PRF define: s} := PRF(t{, k), s}, := PRF (¢!, k)

2. Extend,: This can be batched or/and repeated several times.
+ P, samples randomly ¢, <~ F and e, < F
 Pp samples randomly d;, < F.
. P, sends e, and uf = 3?,0 — sf’l + ¢, to Pp.
 Pp defines b, = e, + f and sends d, to P,.
« P, defines a;, = ¢;, + d;, and outputs x,, = ) 2i8§’0 —ay - e
« Py computes

k
yi = fi(uf +dy) + s} ;.
= fi(sFo—sb1 +ep +dy) + 55,
= fi-ap + 550

and outputs y, = 2¢yF

7

3. Now it holds that y,, = a, - b, + .



Vector OLE

Functionality 7o 5

Define the functionality &,y which maintains a counter £ and which allows to call an

Extend; command multiple times.

« When calling Initialize, Py inputs a field element b. This sets up the functionality for sub-
sequent calls to Extend,,.

» When calling Extend,: P, receives (a, x;) and Py receives y;.

such that y, = a; - b+

Protocol I1o;
Note: This is the I pg, construction from KOS16.

1. Initialization:
+ Ppg chooses some field element b.
« Both parties call F o7 (b), so P, knows t§, ¢! and Py knows ty, -
- With some PRF define: s} := PRF(t{, k), s}, := PRF(t}, k)

2. Extend,: This can be batched or/and repeated several times.
« P, chooses some field element a,, and sends u¥ = 5?,0 — sfyl + a;, to Pp.
- P, outputs z;, = Y 2s¥,
« Pp computes

yr = bi'ui'c'i'sf,fi
k k k
= bi(si,o — 81t ay) + Si.f,
= bZ . a/k + S’IZO
and outputs y,, = 2¢yF

3. Now it holds that y,, = a; - b + z,.
Random Vector OLE

Functionality 7 gvorp

Define the functionality & gy o Which maintains a counter k¥ and which allows to call an

Extend,; command multiple times.

« When calling Initialize, Py receives a field element b. This sets up the functionality for
subsequent calls to Extend,,.

« When calling Extend,: P, receives (a, x;) and Py receives y.

such that y, = a5 - b+ x;,

Protocol Iy o1

1. Initialization:
+ Pg chooses some field element f.
« Both parties call Fzop(f), so Py knows t}, i and Py knows ty..
« P, sends e to Py and Py defines b = e + f.



« With some PRF define: s} := PRF(t{, k), s}, := PRF (¢!, k)

2. Extend,: This can be batched or/and repeated several times.

+ P, samples randomly c;, <— F and Py samples randomly d;, < F.

« P, sendsuf = sk, —sF +¢, to Pp.

« Py sends d; to Py.
« P, defines a;, = c;, + d;, and outputs x;, = 221'8?70 —a-€
« Py computes

yi = fi(uf +di) +sf
= fz‘(sf,o - S§,1 +op +dy) + Sf,fi
= fi-ap+ sy

and outputs y,, = 2¢yF

3. Now it holds that y,, = a, - b + z.
OLE from random OLE

Functionality & ;
Define the functionality & . After getting input a from P4 and b from Pp return = to P,
and y to Pg such thatx +y =a-b.

Protocol I1;

Both parties have access to a functionality F o g, and call Extend,, so P, receives (aj, x},)
and Py receives (b}, y;.)- Then they perform the following derandomization:

« P, sends u; = a;, + aj, to Pg.

+ Ppsends v, = by, + b}, to Py.

« P, outputs x;, = x}, + ay, - vy

« Ppoutputs y, =y + by, - uy.

Now it holds that
Y — Ty = (Yp + bg - uy) — (2}, + aj, - v)
= (yr + by, - (ap +ay)) — (z}, + ay - (b +b}))

= ay by,



	Oblivious Linear Evaluation (OLE) flavors from random OT
	Functionality FROT
	Random OLE
	Functionality FROLE
	Protocol ΠROLE

	Vector OLE
	Functionality FVOLE
	Protocol ΠVOLE

	Random Vector OLE
	Functionality FRVOLE
	Protocol ΠRVOLE

	OLE from random OLE
	Functionality FOLE
	Protocol ΠOLE



