
Oblivious Linear Evaluation (OLE) flavors from random OT
Here we sum up different OLE flavors, where some of them are needed for subprotocols of
TLSNotary. All mentioned OLE protocol flavors are implementations with errors, i.e. in the
presence of a malicious adversary, he can introduce additive errors to the result. This means
correctness is not guaranteed, but privacy is.

Functionality ℱROT
Note: In the literature there are different flavors of random OT, depending on if the receiver
can choose his input or not. Here we that assume the receiver has a choice.

Define the functionality ℱROT:
• The sender 𝑃𝐴 receives the random tuple (𝑡0, 𝑡1), where 𝑡0, 𝑡1 are 𝜅-bit messages.
• The receiver 𝑃𝐵 inputs a bit 𝑥 and receives the corresponding 𝑡𝑥.

Random OLE

Functionality ℱROLE
Define the functionality ℱROLE which maintains a counter 𝑘 and which allows to call an
Extend𝑘 command multiple times.
• When calling Initialize set up the functionality for subsequent calls to Extend𝑘.
• When calling Extend𝑘: 𝑃𝐴 receives (𝑎𝑘, 𝑥𝑘) and 𝑃𝐵 receives (𝑏𝑘, 𝑦𝑘).

such that 𝑦𝑘 = 𝑎𝑘 ⋅ 𝑏𝑘 + 𝑥𝑘

Protocol ΠROLE
1. Initialization:

• 𝑃𝐵 randomly samples 𝑓 ← 𝔽.
• Both parties call ℱROT(𝑓), so 𝑃𝐴 knows 𝑡𝑖0, 𝑡𝑖1 and 𝑃𝐵 knows 𝑡𝑓𝑖 .
• With some PRF define: 𝑠𝑘𝑖,0 ≔ PRF(𝑡𝑖0, 𝑘), 𝑠𝑘𝑖,1 ≔ PRF(𝑡𝑖1, 𝑘)

2. Extend𝑘: This can be batched or/and repeated several times.
• 𝑃𝐴 samples randomly 𝑐𝑘 ← 𝔽 and 𝑒𝑘 ← 𝔽
• 𝑃𝐵 samples randomly 𝑑𝑘 ← 𝔽.
• 𝑃𝐴 sends 𝑒𝑘 and 𝑢𝑘𝑖 = 𝑠𝑘𝑖,0 − 𝑠𝑘𝑖,1 + 𝑐𝑘 to 𝑃𝐵.
• 𝑃𝐵 defines 𝑏𝑘 = 𝑒𝑘 + 𝑓 and sends 𝑑𝑘 to 𝑃𝐴.
• 𝑃𝐴 defines 𝑎𝑘 = 𝑐𝑘 + 𝑑𝑘 and outputs 𝑥𝑘 = ∑2𝑖𝑠𝑘𝑖,0 − 𝑎𝑘 ⋅ 𝑒𝑘
• 𝑃𝐵 computes

𝑦𝑘𝑖 = 𝑓𝑖(𝑢𝑘𝑖 + 𝑑𝑘) + 𝑠𝑘𝑖,𝑓𝑖
= 𝑓𝑖(𝑠𝑘𝑖,0 − 𝑠𝑘𝑖,1 + 𝑐𝑘 + 𝑑𝑘) + 𝑠𝑘𝑖,𝑓𝑖
= 𝑓𝑖 ⋅ 𝑎𝑘 + 𝑠𝑘𝑖,0

and outputs 𝑦𝑘 = 2𝑖𝑦𝑘𝑖
3. Now it holds that 𝑦𝑘 = 𝑎𝑘 ⋅ 𝑏𝑘 + 𝑥𝑘.

Vector OLE

Functionality ℱVOLE
Define the functionality ℱVOLE which maintains a counter 𝑘 and which allows to call an
Extend𝑘 command multiple times.
• When calling Initialize, 𝑃𝐵 inputs a field element 𝑏. This sets up the functionality for sub-

sequent calls to Extend𝑘.
• When calling Extend𝑘: 𝑃𝐴 receives (𝑎𝑘, 𝑥𝑘) and 𝑃𝐵 receives 𝑦𝑘.

such that 𝑦𝑘 = 𝑎𝑘 ⋅ 𝑏 + 𝑥𝑘

Protocol ΠVOLE
Note: This is the ΠCOPEe construction from KOS16.

1. Initialization:
• 𝑃𝐵 chooses some field element 𝑏.
• Both parties call ℱROT(𝑏), so 𝑃𝐴 knows 𝑡𝑖0, 𝑡𝑖1 and 𝑃𝐵 knows 𝑡𝑏𝑖 .
• With some PRF define: 𝑠𝑘𝑖,0 ≔ PRF(𝑡𝑖0, 𝑘), 𝑠𝑘𝑖,1 ≔ PRF(𝑡𝑖1, 𝑘)

2. Extend𝑘: This can be batched or/and repeated several times.
• 𝑃𝐴 chooses some field element 𝑎𝑘 and sends 𝑢𝑘𝑖 = 𝑠𝑘𝑖,0 − 𝑠𝑘𝑖,1 + 𝑎𝑘 to 𝑃𝐵.
• 𝑃𝐴 outputs 𝑥𝑘 = ∑2𝑖𝑠𝑘𝑖,0
• 𝑃𝐵 computes

𝑦𝑘𝑖 = 𝑏𝑖 ⋅ 𝑢𝑘𝑖 + 𝑠𝑘𝑖,𝑓𝑖
= 𝑏𝑖(𝑠𝑘𝑖,0 − 𝑠𝑘𝑖,1 + 𝑎𝑘) + 𝑠𝑘𝑖,𝑓𝑖
= 𝑏𝑖 ⋅ 𝑎𝑘 + 𝑠𝑘𝑖,0

and outputs 𝑦𝑘 = 2𝑖𝑦𝑘𝑖
3. Now it holds that 𝑦𝑘 = 𝑎𝑘 ⋅ 𝑏 + 𝑥𝑘.

Random Vector OLE

Functionality ℱRVOLE
Define the functionality ℱRVOLE which maintains a counter 𝑘 and which allows to call an
Extend𝑘 command multiple times.
• When calling Initialize, 𝑃𝐵 receives a field element 𝑏. This sets up the functionality for

subsequent calls to Extend𝑘.
• When calling Extend𝑘: 𝑃𝐴 receives (𝑎𝑘, 𝑥𝑘) and 𝑃𝐵 receives 𝑦𝑘.

such that 𝑦𝑘 = 𝑎𝑘 ⋅ 𝑏 + 𝑥𝑘

Protocol ΠRVOLE
1. Initialization:

• 𝑃𝐵 chooses some field element 𝑓 .
• Both parties call ℱROT(𝑓), so 𝑃𝐴 knows 𝑡𝑖0, 𝑡𝑖1 and 𝑃𝐵 knows 𝑡𝑓𝑖 .
• 𝑃𝐴 sends 𝑒 to 𝑃𝐵 and 𝑃𝐵 defines 𝑏 = 𝑒 + 𝑓 .

• With some PRF define: 𝑠𝑘𝑖,0 ≔ PRF(𝑡𝑖0, 𝑘), 𝑠𝑘𝑖,1 ≔ PRF(𝑡𝑖1, 𝑘)

2. Extend𝑘: This can be batched or/and repeated several times.
• 𝑃𝐴 samples randomly 𝑐𝑘 ← 𝔽 and 𝑃𝐵 samples randomly 𝑑𝑘 ← 𝔽.
• 𝑃𝐴 sends 𝑢𝑘𝑖 = 𝑠𝑘𝑖,0 − 𝑠𝑘𝑖,1 + 𝑐𝑘 to 𝑃𝐵.
• 𝑃𝐵 sends 𝑑𝑘 to 𝑃𝐴.
• 𝑃𝐴 defines 𝑎𝑘 = 𝑐𝑘 + 𝑑𝑘 and outputs 𝑥𝑘 = ∑2𝑖𝑠𝑘𝑖,0 − 𝑎𝑘 ⋅ 𝑒
• 𝑃𝐵 computes

𝑦𝑘𝑖 = 𝑓𝑖(𝑢𝑘𝑖 + 𝑑𝑘) + 𝑠𝑘𝑖,𝑓𝑖
= 𝑓𝑖(𝑠𝑘𝑖,0 − 𝑠𝑘𝑖,1 + 𝑐𝑘 + 𝑑𝑘) + 𝑠𝑘𝑖,𝑓𝑖
= 𝑓𝑖 ⋅ 𝑎𝑘 + 𝑠𝑘𝑖,0

and outputs 𝑦𝑘 = 2𝑖𝑦𝑘𝑖
3. Now it holds that 𝑦𝑘 = 𝑎𝑘 ⋅ 𝑏 + 𝑥𝑘.

OLE from random OLE

Functionality ℱOLE
Define the functionality ℱOLE. After getting input 𝑎 from 𝑃𝐴 and 𝑏 from 𝑃𝐵 return 𝑥 to 𝑃𝐴
and 𝑦 to 𝑃𝐵 such that 𝑥 + 𝑦 = 𝑎 ⋅ 𝑏.

Protocol ΠOLE
Both parties have access to a functionality ℱROLE, and call Extend𝑘, so 𝑃𝐴 receives (𝑎′𝑘, 𝑥′𝑘)
and 𝑃𝐵 receives (𝑏′𝑘, 𝑦′𝑘). Then they perform the following derandomization:
• 𝑃𝐴 sends 𝑢𝑘 = 𝑎𝑘 + 𝑎′𝑘 to 𝑃𝐵.
• 𝑃𝐵 sends 𝑣𝑘 = 𝑏𝑘 + 𝑏′𝑘 to 𝑃𝐴.
• 𝑃𝐴 outputs 𝑥𝑘 = 𝑥′𝑘 + 𝑎′𝑘 ⋅ 𝑣𝑘.
• 𝑃𝐵 outputs 𝑦𝑘 = 𝑦′𝑘 + 𝑏𝑘 ⋅ 𝑢𝑘.

Now it holds that

𝑦𝑘 − 𝑥𝑘 = (𝑦′𝑘 + 𝑏𝑘 ⋅ 𝑢𝑘) − (𝑥′𝑘 + 𝑎′𝑘 ⋅ 𝑣𝑘)
= (𝑦′𝑘 + 𝑏𝑘 ⋅ (𝑎𝑘 + 𝑎′𝑘)) − (𝑥′𝑘 + 𝑎′𝑘 ⋅ (𝑏𝑘 + 𝑏′𝑘))
= 𝑎𝑘 ⋅ 𝑏𝑘

	Oblivious Linear Evaluation (OLE) flavors from random OT
	Functionality FROT
	Random OLE
	Functionality FROLE
	Protocol ΠROLE

	Vector OLE
	Functionality FVOLE
	Protocol ΠVOLE

	Random Vector OLE
	Functionality FRVOLE
	Protocol ΠRVOLE

	OLE from random OLE
	Functionality FOLE
	Protocol ΠOLE

