Files
zerokit/rln/src/public.rs

1445 lines
60 KiB
Rust

/// This is the main public API for RLN module. It is used by the FFI, and should be
/// used by tests etc. as well
#[cfg(not(feature = "stateless"))]
use {
crate::{circuit::TEST_TREE_HEIGHT, poseidon_tree::PoseidonTree},
serde_json::{json, Value},
std::str::FromStr,
utils::{Hasher, ZerokitMerkleProof, ZerokitMerkleTree},
};
use crate::circuit::{zkey_from_raw, Curve, Fr};
use crate::hashers::{hash_to_field, poseidon_hash as utils_poseidon_hash};
use crate::protocol::*;
use crate::utils::*;
#[cfg(not(target_arch = "wasm32"))]
use {
crate::circuit::{graph_from_folder, zkey_from_folder},
std::default::Default,
};
use ark_groth16::{Proof as ArkProof, ProvingKey, VerifyingKey};
use ark_relations::r1cs::ConstraintMatrices;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, Write};
use color_eyre::{Report, Result};
use std::io::Cursor;
#[cfg(target_arch = "wasm32")]
use num_bigint::BigInt;
/// The application-specific RLN identifier.
///
/// Prevents a RLN ZK proof generated for one application to be re-used in another one.
pub const RLN_IDENTIFIER: &[u8] = b"zerokit/rln/010203040506070809";
/// The RLN object.
///
/// It implements the methods required to update the internal Merkle Tree, generate and verify RLN ZK proofs.
///
/// I/O is mostly done using writers and readers implementing `std::io::Write` and `std::io::Read`, respectively.
pub struct RLN {
proving_key: (ProvingKey<Curve>, ConstraintMatrices<Fr>),
pub(crate) verification_key: VerifyingKey<Curve>,
#[cfg(not(target_arch = "wasm32"))]
pub(crate) graph_data: Vec<u8>,
#[cfg(not(feature = "stateless"))]
pub(crate) tree: PoseidonTree,
}
impl RLN {
/// Creates a new RLN object by loading circuit resources from a folder.
///
/// Input parameters are
/// - `tree_height`: the height of the internal Merkle tree
/// - `input_data`: include `tree_config` a reader for a string containing a json with the merkle tree configuration
///
/// Example:
/// ```
/// use std::io::Cursor;
///
/// let tree_height = 20;
/// let input = Cursor::new(json!({}).to_string());
///
/// // We create a new RLN instance
/// let mut rln = RLN::new(tree_height, input);
/// ```
#[cfg(all(not(target_arch = "wasm32"), not(feature = "stateless")))]
pub fn new<R: Read>(tree_height: usize, mut input_data: R) -> Result<RLN> {
// We read input
let mut input: Vec<u8> = Vec::new();
input_data.read_to_end(&mut input)?;
let rln_config: Value = serde_json::from_str(&String::from_utf8(input)?)?;
let tree_config = rln_config["tree_config"].to_string();
let proving_key = zkey_from_folder().to_owned();
let verification_key = proving_key.0.vk.to_owned();
let graph_data = graph_from_folder().to_owned();
let tree_config: <PoseidonTree as ZerokitMerkleTree>::Config = if tree_config.is_empty() {
<PoseidonTree as ZerokitMerkleTree>::Config::default()
} else {
<PoseidonTree as ZerokitMerkleTree>::Config::from_str(&tree_config)?
};
// We compute a default empty tree
let tree = PoseidonTree::new(
tree_height,
<PoseidonTree as ZerokitMerkleTree>::Hasher::default_leaf(),
tree_config,
)?;
Ok(RLN {
proving_key,
verification_key,
graph_data,
#[cfg(not(feature = "stateless"))]
tree,
})
}
/// Creates a new stateless RLN object by loading circuit resources from a folder.
///
/// Example:
///
/// ```
/// // We create a new RLN instance
/// let mut rln = RLN::new();
/// ```
#[cfg_attr(docsrs, doc(cfg(feature = "stateless")))]
#[cfg(all(not(target_arch = "wasm32"), feature = "stateless"))]
pub fn new() -> Result<RLN> {
let proving_key = zkey_from_folder().to_owned();
let verification_key = proving_key.0.vk.to_owned();
let graph_data = graph_from_folder().to_owned();
Ok(RLN {
proving_key,
verification_key,
graph_data,
})
}
/// Creates a new RLN object by passing circuit resources as byte vectors.
///
/// Input parameters are
/// - `tree_height`: the height of the internal Merkle tree
/// - `zkey_vec`: a byte vector containing to the proving key (`rln_final.zkey`) or (`rln_final.arkzkey`) as binary file
/// - `graph_data`: a byte vector containing the graph data (`graph.bin`) as binary file
/// - `tree_config_input`: a reader for a string containing a json with the merkle tree configuration
///
/// Example:
/// ```
/// use std::fs::File;
/// use std::io::Read;
///
/// let tree_height = 20;
/// let resources_folder = "./resources/tree_height_20/";
///
/// let mut resources: Vec<Vec<u8>> = Vec::new();
/// for filename in ["rln_final.zkey", "graph.bin"] {
/// let fullpath = format!("{resources_folder}{filename}");
/// let mut file = File::open(&fullpath).expect("no file found");
/// let metadata = std::fs::metadata(&fullpath).expect("unable to read metadata");
/// let mut buffer = vec![0; metadata.len() as usize];
/// file.read_exact(&mut buffer).expect("buffer overflow");
/// resources.push(buffer);
/// }
///
/// let tree_config = "".to_string();
/// let tree_config_buffer = &Buffer::from(tree_config.as_bytes());
///
/// let mut rln = RLN::new_with_params(
/// tree_height,
/// resources[0].clone(),
/// resources[1].clone(),
/// tree_config_buffer,
/// );
/// ```
#[cfg(all(not(target_arch = "wasm32"), not(feature = "stateless")))]
pub fn new_with_params<R: Read>(
tree_height: usize,
zkey_vec: Vec<u8>,
graph_data: Vec<u8>,
mut tree_config_input: R,
) -> Result<RLN> {
let proving_key = zkey_from_raw(&zkey_vec)?;
let verification_key = proving_key.0.vk.to_owned();
let mut tree_config_vec: Vec<u8> = Vec::new();
tree_config_input.read_to_end(&mut tree_config_vec)?;
let tree_config_str = String::from_utf8(tree_config_vec)?;
let tree_config: <PoseidonTree as ZerokitMerkleTree>::Config = if tree_config_str.is_empty()
{
<PoseidonTree as ZerokitMerkleTree>::Config::default()
} else {
<PoseidonTree as ZerokitMerkleTree>::Config::from_str(&tree_config_str)?
};
// We compute a default empty tree
let tree = PoseidonTree::new(
tree_height,
<PoseidonTree as ZerokitMerkleTree>::Hasher::default_leaf(),
tree_config,
)?;
Ok(RLN {
proving_key,
verification_key,
graph_data,
#[cfg(not(feature = "stateless"))]
tree,
})
}
/// Creates a new stateless RLN object by passing circuit resources as byte vectors.
///
/// Input parameters are
/// - `zkey_vec`: a byte vector containing to the proving key (`rln_final.zkey`) or (`rln_final.arkzkey`) as binary file
/// - `graph_data`: a byte vector containing the graph data (`graph.bin`) as binary file
///
/// Example:
/// ```
/// use std::fs::File;
/// use std::io::Read;
///
/// let resources_folder = "./resources/tree_height_20/";
///
/// let mut resources: Vec<Vec<u8>> = Vec::new();
/// for filename in ["rln_final.zkey", "graph.bin"] {
/// let fullpath = format!("{resources_folder}{filename}");
/// let mut file = File::open(&fullpath).expect("no file found");
/// let metadata = std::fs::metadata(&fullpath).expect("unable to read metadata");
/// let mut buffer = vec![0; metadata.len() as usize];
/// file.read_exact(&mut buffer).expect("buffer overflow");
/// resources.push(buffer);
/// }
///
/// let mut rln = RLN::new_with_params(
/// resources[0].clone(),
/// resources[1].clone(),
/// );
/// ```
#[cfg(all(not(target_arch = "wasm32"), feature = "stateless"))]
pub fn new_with_params(zkey_vec: Vec<u8>, graph_data: Vec<u8>) -> Result<RLN> {
let proving_key = zkey_from_raw(&zkey_vec)?;
let verification_key = proving_key.0.vk.to_owned();
Ok(RLN {
proving_key,
verification_key,
graph_data,
})
}
/// Creates a new stateless RLN object by passing circuit resources as a byte vector.
///
/// Input parameters are
/// - `zkey_vec`: a byte vector containing the proving key (`rln_final.zkey`) or (`rln_final.arkzkey`) as binary file
///
/// Example:
/// ```
/// use std::fs::File;
/// use std::io::Read;
///
/// let zkey_path = "./resources/tree_height_20/rln_final.zkey";
///
/// let mut file = File::open(zkey_path).expect("Failed to open file");
/// let metadata = std::fs::metadata(zkey_path).expect("Failed to read metadata");
/// let mut zkey_vec = vec![0; metadata.len() as usize];
/// file.read_exact(&mut zkey_vec).expect("Failed to read file");
///
/// let mut rln = RLN::new_with_params(zkey_vec)?;
/// ```
#[cfg(all(target_arch = "wasm32", feature = "stateless"))]
pub fn new_with_params(zkey_vec: Vec<u8>) -> Result<RLN> {
let proving_key = zkey_from_raw(&zkey_vec)?;
let verification_key = proving_key.0.vk.to_owned();
Ok(RLN {
proving_key,
verification_key,
})
}
////////////////////////////////////////////////////////
// Merkle-tree APIs
////////////////////////////////////////////////////////
/// Initializes the internal Merkle tree.
///
/// Leaves are set to the default value implemented in PoseidonTree implementation.
///
/// Input values are:
/// - `tree_height`: the height of the Merkle tree.
#[cfg(not(feature = "stateless"))]
pub fn set_tree(&mut self, tree_height: usize) -> Result<()> {
// We compute a default empty tree of desired height
self.tree = PoseidonTree::default(tree_height)?;
Ok(())
}
/// Sets a leaf value at position index in the internal Merkle tree.
///
/// Input values are:
/// - `index`: the index of the leaf
/// - `input_data`: a reader for the serialization of the leaf value (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le))
///
/// Example:
/// ```
/// use crate::protocol::*;
///
/// // We generate a random identity secret hash and commitment pair
/// let (identity_secret_hash, id_commitment) = keygen();
///
/// // We define the tree index where rate_commitment will be added
/// let id_index = 10;
/// let user_message_limit = 1;
///
/// let rate_commitment = poseidon_hash(&[id_commitment, user_message_limit]);
///
/// // We serialize rate_commitment and pass it to set_leaf
/// let mut buffer = Cursor::new(serialize_field_element(rate_commitment));
/// rln.set_leaf(id_index, &mut buffer).unwrap();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn set_leaf<R: Read>(&mut self, index: usize, mut input_data: R) -> Result<()> {
// We read input
let mut leaf_byte: Vec<u8> = Vec::new();
input_data.read_to_end(&mut leaf_byte)?;
// We set the leaf at input index
let (leaf, _) = bytes_le_to_fr(&leaf_byte);
self.tree.set(index, leaf)?;
Ok(())
}
/// Gets a leaf value at position index in the internal Merkle tree.
/// The leaf value is written to output_data.
/// Input values are:
/// - `index`: the index of the leaf
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the metadata
///
/// Example:
/// ```
/// use crate::protocol::*;
/// use std::io::Cursor;
///
/// let id_index = 10;
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.get_leaf(id_index, &mut buffer).unwrap();
/// let rate_commitment = deserialize_field_element(&buffer.into_inner()).unwrap();
#[cfg(not(feature = "stateless"))]
pub fn get_leaf<W: Write>(&self, index: usize, mut output_data: W) -> Result<()> {
// We get the leaf at input index
let leaf = self.tree.get(index)?;
// We serialize the leaf and write it to output
let leaf_byte = fr_to_bytes_le(&leaf);
output_data.write_all(&leaf_byte)?;
Ok(())
}
/// Sets multiple leaves starting from position index in the internal Merkle tree.
///
/// If n leaves are passed as input, these will be set at positions `index`, `index+1`, ..., `index+n-1` respectively.
///
/// This function updates the internal Merkle tree `next_index value indicating the next available index corresponding to a never-set leaf as `next_index = max(next_index, index + n)`.
///
/// Input values are:
/// - `index`: the index of the first leaf to be set
/// - `input_data`: a reader for the serialization of multiple leaf values (serialization done with [`rln::utils::vec_fr_to_bytes_le`](crate::utils::vec_fr_to_bytes_le))
///
/// Example:
/// ```
/// use rln::circuit::Fr;
/// use rln::utils::*;
///
/// let start_index = 10;
/// let no_of_leaves = 256;
///
/// // We generate a vector of random leaves
/// let mut leaves: Vec<Fr> = Vec::new();
/// let mut rng = thread_rng();
/// for _ in 0..no_of_leaves {
/// let (_, id_commitment) = keygen();
/// let rate_commitment = poseidon_hash(&[id_commitment, 1.into()]);
/// leaves.push(rate_commitment);
/// }
///
/// // We add leaves in a batch into the tree
/// let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves));
/// rln.set_leaves_from(index, &mut buffer).unwrap();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn set_leaves_from<R: Read>(&mut self, index: usize, mut input_data: R) -> Result<()> {
// We read input
let mut leaves_byte: Vec<u8> = Vec::new();
input_data.read_to_end(&mut leaves_byte)?;
let (leaves, _) = bytes_le_to_vec_fr(&leaves_byte)?;
// We set the leaves
self.tree
.override_range(index, leaves.into_iter(), [].into_iter())
.map_err(|_| Report::msg("Could not set leaves"))?;
Ok(())
}
/// Resets the tree state to default and sets multiple leaves starting from index 0.
///
/// In contrast to [`set_leaves_from`](crate::public::RLN::set_leaves_from), this function resets to 0 the internal `next_index` value, before setting the input leaves values.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of multiple leaf values (serialization done with [`rln::utils::vec_fr_to_bytes_le`](crate::utils::vec_fr_to_bytes_le))
#[cfg(not(feature = "stateless"))]
pub fn init_tree_with_leaves<R: Read>(&mut self, input_data: R) -> Result<()> {
// reset the tree
// NOTE: this requires the tree to be initialized with the correct height initially
// TODO: accept tree_height as a parameter and initialize the tree with that height
self.set_tree(self.tree.depth())?;
self.set_leaves_from(0, input_data)
}
/// Sets multiple leaves starting from position index in the internal Merkle tree.
/// Also accepts an array of indices to remove from the tree.
///
/// If n leaves are passed as input, these will be set at positions `index`, `index+1`, ..., `index+n-1` respectively.
/// If m indices are passed as input, these will be removed from the tree.
///
/// This function updates the internal Merkle tree `next_index value indicating the next available index corresponding to a never-set leaf as `next_index = max(next_index, index + n)`.
///
/// Input values are:
/// - `index`: the index of the first leaf to be set
/// - `input_leaves`: a reader for the serialization of multiple leaf values (serialization done with [`rln::utils::vec_fr_to_bytes_le`](crate::utils::vec_fr_to_bytes_le))
/// - `input_indices`: a reader for the serialization of multiple indices to remove (serialization done with [`rln::utils::vec_u8_to_bytes_le`](crate::utils::vec_u8_to_bytes_le))
///
/// Example:
/// ```
/// use rln::circuit::Fr;
/// use rln::utils::*;
///
/// let start_index = 10;
/// let no_of_leaves = 256;
///
/// // We generate a vector of random leaves
/// let mut leaves: Vec<Fr> = Vec::new();
/// let mut rng = thread_rng();
/// for _ in 0..no_of_leaves {
/// let (_, id_commitment) = keygen();
/// let rate_commitment = poseidon_hash(&[id_commitment, 1.into()]);
/// leaves.push(rate_commitment);
/// }
///
/// let mut indices: Vec<u8> = Vec::new();
/// for i in 0..no_of_leaves {
/// if i % 2 == 0 {
/// indices.push(i as u8);
/// }
/// }
///
/// // We atomically add leaves and remove indices from the tree
/// let mut leaves_buffer = Cursor::new(vec_fr_to_bytes_le(&leaves));
/// let mut indices_buffer = Cursor::new(vec_u8_to_bytes_le(&indices));
/// rln.atomic_operation(index, &mut leaves_buffer, indices_buffer).unwrap();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn atomic_operation<R: Read>(
&mut self,
index: usize,
mut input_leaves: R,
mut input_indices: R,
) -> Result<()> {
// We read input
let mut leaves_byte: Vec<u8> = Vec::new();
input_leaves.read_to_end(&mut leaves_byte)?;
let (leaves, _) = bytes_le_to_vec_fr(&leaves_byte)?;
let mut indices_byte: Vec<u8> = Vec::new();
input_indices.read_to_end(&mut indices_byte)?;
let (indices, _) = bytes_le_to_vec_u8(&indices_byte)?;
let indices: Vec<usize> = indices.iter().map(|x| *x as usize).collect();
// We set the leaves
self.tree
.override_range(index, leaves.into_iter(), indices.into_iter())
.map_err(|e| Report::msg(format!("Could not perform the batch operation: {e}")))?;
Ok(())
}
#[cfg(not(feature = "stateless"))]
pub fn leaves_set(&mut self) -> usize {
self.tree.leaves_set()
}
/// Sets a leaf value at the next available never-set leaf index.
///
/// This function updates the internal Merkle tree `next_index` value indicating the next available index corresponding to a never-set leaf as `next_index = next_index + 1`.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of multiple leaf values (serialization done with [`rln::utils::vec_fr_to_bytes_le`](crate::utils::vec_fr_to_bytes_le))
///
/// Example:
/// ```
/// use rln::circuit::Fr;
/// use rln::utils::*;
///
/// let tree_height = 20;
/// let start_index = 10;
/// let no_of_leaves = 256;
///
/// // We reset the tree
/// rln.set_tree(tree_height).unwrap();
///
/// // Internal Merkle tree next_index value is now 0
///
/// // We generate a vector of random leaves
/// let mut leaves: Vec<Fr> = Vec::new();
/// let mut rng = thread_rng();
/// for _ in 0..no_of_leaves {
/// let (_, id_commitment) = keygen();
/// let rate_commitment = poseidon_hash(&[id_commitment, 1.into()]);
/// leaves.push(rate_commitment);
/// }
///
/// // We add leaves in a batch into the tree
/// let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves));
/// rln.set_leaves_from(index, &mut buffer).unwrap();
///
/// // We set 256 leaves starting from index 10: next_index value is now max(0, 256+10) = 266
///
/// // We set a leaf on next available index
/// // rate_commitment will be set at index 266
/// let (_, id_commitment) = keygen();
/// let rate_commitment = poseidon_hash(&[id_commitment, 1.into()]);
/// let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
/// rln.set_next_leaf(&mut buffer).unwrap();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn set_next_leaf<R: Read>(&mut self, mut input_data: R) -> Result<()> {
// We read input
let mut leaf_byte: Vec<u8> = Vec::new();
input_data.read_to_end(&mut leaf_byte)?;
// We set the leaf at input index
let (leaf, _) = bytes_le_to_fr(&leaf_byte);
self.tree.update_next(leaf)?;
Ok(())
}
/// Sets the value of the leaf at position index to the hardcoded default value.
///
/// This function does not change the internal Merkle tree `next_index` value.
///
/// Input values are:
/// - `index`: the index of the leaf whose value will be reset
///
/// Example
/// ```
///
/// let index = 10;
/// rln.delete_leaf(index).unwrap();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn delete_leaf(&mut self, index: usize) -> Result<()> {
self.tree.delete(index)?;
Ok(())
}
/// Sets some metadata that a consuming application may want to store in the RLN object.
/// This metadata is not used by the RLN module.
///
/// Input values are:
/// - `metadata`: a byte vector containing the metadata
///
/// Example
///
/// ```
/// let metadata = b"some metadata";
/// rln.set_metadata(metadata).unwrap();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn set_metadata(&mut self, metadata: &[u8]) -> Result<()> {
self.tree.set_metadata(metadata)?;
Ok(())
}
/// Returns the metadata stored in the RLN object.
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the metadata
///
/// Example
///
/// ```
/// use std::io::Cursor;
///
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.get_metadata(&mut buffer).unwrap();
/// let metadata = buffer.into_inner();
/// ```
#[cfg(not(feature = "stateless"))]
pub fn get_metadata<W: Write>(&self, mut output_data: W) -> Result<()> {
let metadata = self.tree.metadata()?;
output_data.write_all(&metadata)?;
Ok(())
}
/// Returns the Merkle tree root
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the root value (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le))
///
/// Example
/// ```
/// use rln::utils::*;
///
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.get_root(&mut buffer).unwrap();
/// let (root, _) = bytes_le_to_fr(&buffer.into_inner());
/// ```
#[cfg(not(feature = "stateless"))]
pub fn get_root<W: Write>(&self, mut output_data: W) -> Result<()> {
let root = self.tree.root();
output_data.write_all(&fr_to_bytes_le(&root))?;
Ok(())
}
/// Returns the root of subtree in the Merkle tree
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the node value (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le))
///
/// Example
/// ```
/// use rln::utils::*;
///
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// let level = 1;
/// let index = 2;
/// rln.get_subtree_root(level, index, &mut buffer).unwrap();
/// let (subroot, _) = bytes_le_to_fr(&buffer.into_inner());
/// ```
#[cfg(not(feature = "stateless"))]
pub fn get_subtree_root<W: Write>(
&self,
level: usize,
index: usize,
mut output_data: W,
) -> Result<()> {
let subroot = self.tree.get_subtree_root(level, index)?;
output_data.write_all(&fr_to_bytes_le(&subroot))?;
Ok(())
}
/// Returns the Merkle proof of the leaf at position index
///
/// Input values are:
/// - `index`: the index of the leaf
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the path elements and path indexes (serialization done with [`rln::utils::vec_fr_to_bytes_le`](crate::utils::vec_fr_to_bytes_le) and [`rln::utils::vec_u8_to_bytes_le`](crate::utils::vec_u8_to_bytes_le), respectively)
///
/// Example
/// ```
/// use rln::utils::*;
///
/// let index = 10;
///
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.get_proof(index, &mut buffer).unwrap();
///
/// let buffer_inner = buffer.into_inner();
/// let (path_elements, read) = bytes_le_to_vec_fr(&buffer_inner);
/// let (identity_path_index, _) = bytes_le_to_vec_u8(&buffer_inner[read..].to_vec());
/// ```
#[cfg(not(feature = "stateless"))]
pub fn get_proof<W: Write>(&self, index: usize, mut output_data: W) -> Result<()> {
let merkle_proof = self.tree.proof(index).expect("proof should exist");
let path_elements = merkle_proof.get_path_elements();
let identity_path_index = merkle_proof.get_path_index();
output_data.write_all(&vec_fr_to_bytes_le(&path_elements)?)?;
output_data.write_all(&vec_u8_to_bytes_le(&identity_path_index)?)?;
Ok(())
}
/// Returns indices of leaves in the tree are set to zero (upto the final leaf that was set).
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the indices of leaves.
///
/// Example
/// ```
/// use rln::circuit::Fr;
/// use rln::utils::*;
///
/// let start_index = 5;
/// let no_of_leaves = 256;
///
/// // We generate a vector of random leaves
/// let mut leaves: Vec<Fr> = Vec::new();
/// let mut rng = thread_rng();
/// for _ in 0..no_of_leaves {
/// let (_, id_commitment) = keygen();
/// let rate_commitment = poseidon_hash(&[id_commitment, 1.into()]);
/// leaves.push(rate_commitment);
/// }
///
/// // We add leaves in a batch into the tree
/// let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves));
/// rln.set_leaves_from(index, &mut buffer).unwrap();
///
/// // Get indices of first empty leaves upto start_index
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.get_empty_leaves_indices(&mut buffer).unwrap();
/// let idxs = bytes_le_to_vec_usize(&buffer.into_inner()).unwrap();
/// assert_eq!(idxs, [0, 1, 2, 3, 4]);
/// ```
#[cfg(not(feature = "stateless"))]
pub fn get_empty_leaves_indices<W: Write>(&self, mut output_data: W) -> Result<()> {
let idxs = self.tree.get_empty_leaves_indices();
idxs.serialize_compressed(&mut output_data)?;
Ok(())
}
////////////////////////////////////////////////////////
// zkSNARK APIs
////////////////////////////////////////////////////////
/// Computes a zkSNARK RLN proof using a [`RLNWitnessInput`].
///
/// Input values are:
/// - `input_data`: a reader for the serialization of a [`RLNWitnessInput`] object, containing the public and private inputs to the ZK circuits (serialization done using [`rln::protocol::serialize_witness`](crate::protocol::serialize_witness))
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the zkSNARK proof
///
/// Example:
/// ```
/// use rln::protocol::*;
///
/// let rln_witness = random_rln_witness(tree_height);
/// let proof_values = proof_values_from_witness(&rln_witness);
///
/// // We compute a Groth16 proof
/// let mut input_buffer = Cursor::new(serialize_witness(&rln_witness));
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// rln.prove(&mut input_buffer, &mut output_buffer).unwrap();
/// let zk_proof = output_buffer.into_inner();
/// ```
#[cfg(not(target_arch = "wasm32"))]
pub fn prove<R: Read, W: Write>(
&mut self,
mut input_data: R,
mut output_data: W,
) -> Result<()> {
// We read input RLN witness and we serialize_compressed it
let mut serialized_witness: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized_witness)?;
let (rln_witness, _) = deserialize_witness(&serialized_witness)?;
let proof = generate_proof(&self.proving_key, &rln_witness, &self.graph_data)?;
// Note: we export a serialization of ark-groth16::Proof not semaphore::Proof
proof.serialize_compressed(&mut output_data)?;
Ok(())
}
/// Verifies a zkSNARK RLN proof.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of the RLN zkSNARK proof concatenated with a serialization of the circuit output values,
/// i.e. `[ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32>]`, where <_> indicates the byte length.
///
/// The function returns true if the zkSNARK proof is valid with respect to the provided circuit output values, false otherwise.
///
/// Example:
/// ```
/// use rln::protocol::*;
///
/// let rln_witness = random_rln_witness(tree_height);
///
/// // We compute a Groth16 proof
/// let mut input_buffer = Cursor::new(serialize_witness(&rln_witness));
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// rln.prove(&mut input_buffer, &mut output_buffer).unwrap();
/// let zk_proof = output_buffer.into_inner();
///
/// // We prepare the input to prove API, consisting of zk_proof (compressed, 4*32 bytes) || proof_values (6*32 bytes)
/// // In this example, we compute proof values directly from witness using the utility proof_values_from_witness
/// let proof_values = proof_values_from_witness(&rln_witness);
/// let serialized_proof_values = serialize_proof_values(&proof_values);
///
/// // We build the input to the verify method
/// let mut verify_data = Vec::<u8>::new();
/// verify_data.extend(&zk_proof);
/// verify_data.extend(&proof_values);
/// let mut input_buffer = Cursor::new(verify_data);
///
/// // We verify the Groth16 proof against the provided zk-proof and proof values
/// let verified = rln.verify(&mut input_buffer).unwrap();
///
/// assert!(verified);
/// ```
pub fn verify<R: Read>(&self, mut input_data: R) -> Result<bool> {
// Input data is serialized for Curve as:
// serialized_proof (compressed, 4*32 bytes) || serialized_proof_values (6*32 bytes), i.e.
// [ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> ]
let mut input_byte: Vec<u8> = Vec::new();
input_data.read_to_end(&mut input_byte)?;
let proof = ArkProof::deserialize_compressed(&mut Cursor::new(&input_byte[..128]))?;
let (proof_values, _) = deserialize_proof_values(&input_byte[128..]);
let verified = verify_proof(&self.verification_key, &proof, &proof_values)?;
Ok(verified)
}
/// Computes a zkSNARK RLN proof from the identity secret, the Merkle tree index, the user message limit, the message id, the external nullifier (which include epoch and rln identifier) and signal.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of `[ identity_secret<32> | id_index<8> | user_message_limit<32> | message_id<32> | external_nullifier<32> | signal_len<8> | signal<var> ]`
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the zkSNARK proof and the circuit evaluations outputs, i.e. `[ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32>]`
///
/// Example
/// ```
/// use rln::protocol::*:
/// use rln::utils::*;
/// use rln::hashers::*;
///
/// // Generate identity pair
/// let (identity_secret_hash, id_commitment) = keygen();
///
/// // We set as leaf rate_commitment after storing its index
/// let identity_index = 10;
/// let rate_commitment = poseidon_hash(&[id_commitment, 1.into()]);
/// let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
/// rln.set_leaf(identity_index, &mut buffer).unwrap();
///
/// // We generate a random epoch
/// let epoch = hash_to_field(b"test-epoch");
/// // We generate a random rln_identifier
/// let rln_identifier = hash_to_field(b"test-rln-identifier");
/// // We generate a external nullifier
/// let external_nullifier = utils_poseidon_hash(&[epoch, rln_identifier]);
/// // We choose a message_id satisfy 0 <= message_id < MESSAGE_LIMIT
/// let message_id = Fr::from(1);
///
/// // We prepare input for generate_rln_proof API
/// // input_data is [ identity_secret<32> | id_index<8> | user_message_limit<32> | message_id<32> | external_nullifier<32> | signal_len<8> | signal<var> ]
/// let prove_input = prepare_prove_input(
/// identity_secret_hash,
/// identity_index,
/// user_message_limit,
/// message_id,
/// external_nullifier,
/// &signal,
/// );
///
/// let mut input_buffer = Cursor::new(serialized);
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
/// .unwrap();
///
/// // proof_data is [ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32>]
/// let mut proof_data = output_buffer.into_inner();
/// ```
#[cfg(all(not(target_arch = "wasm32"), not(feature = "stateless")))]
pub fn generate_rln_proof<R: Read, W: Write>(
&mut self,
mut input_data: R,
mut output_data: W,
) -> Result<()> {
// We read input RLN witness and we serialize_compressed it
let mut witness_byte: Vec<u8> = Vec::new();
input_data.read_to_end(&mut witness_byte)?;
let (rln_witness, _) = proof_inputs_to_rln_witness(&mut self.tree, &witness_byte)?;
let proof_values = proof_values_from_witness(&rln_witness)?;
let proof = generate_proof(&self.proving_key, &rln_witness, &self.graph_data)?;
// Note: we export a serialization of ark-groth16::Proof not semaphore::Proof
// This proof is compressed, i.e. 128 bytes long
proof.serialize_compressed(&mut output_data)?;
output_data.write_all(&serialize_proof_values(&proof_values))?;
Ok(())
}
/// Generate RLN Proof using a witness calculated from outside zerokit
///
/// output_data is [ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32>]
#[cfg(not(target_arch = "wasm32"))]
pub fn generate_rln_proof_with_witness<R: Read, W: Write>(
&mut self,
mut input_data: R,
mut output_data: W,
) -> Result<()> {
let mut serialized_witness: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized_witness)?;
let (rln_witness, _) = deserialize_witness(&serialized_witness)?;
let proof_values = proof_values_from_witness(&rln_witness)?;
let proof = generate_proof(&self.proving_key, &rln_witness, &self.graph_data)?;
// Note: we export a serialization of ark-groth16::Proof not semaphore::Proof
// This proof is compressed, i.e. 128 bytes long
proof.serialize_compressed(&mut output_data)?;
output_data.write_all(&serialize_proof_values(&proof_values))?;
Ok(())
}
/// Generate RLN Proof using a witness calculated from outside zerokit
///
/// output_data is [ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32>]
#[cfg(target_arch = "wasm32")]
pub fn generate_rln_proof_with_witness<W: Write>(
&mut self,
calculated_witness: Vec<BigInt>,
serialized_witness: Vec<u8>,
mut output_data: W,
) -> Result<()> {
let (rln_witness, _) = deserialize_witness(&serialized_witness[..])?;
let proof_values = proof_values_from_witness(&rln_witness)?;
let proof = generate_proof_with_witness(calculated_witness, &self.proving_key).unwrap();
// Note: we export a serialization of ark-groth16::Proof not semaphore::Proof
// This proof is compressed, i.e. 128 bytes long
proof.serialize_compressed(&mut output_data)?;
output_data.write_all(&serialize_proof_values(&proof_values))?;
Ok(())
}
/// Verifies a zkSNARK RLN proof against the provided proof values and the state of the internal Merkle tree.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of the RLN zkSNARK proof concatenated with a serialization of the circuit output values and the signal information,
/// i.e. `[ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> | signal_len<8> | signal<var>]`, where <_> indicates the byte length.
///
/// The function returns true if the zkSNARK proof is valid with respect to the provided circuit output values and signal. Returns false otherwise.
///
/// Note that contrary to [`verify`](crate::public::RLN::verify), this function takes additionally as input the signal and further verifies if
/// - the Merkle tree root corresponds to the root provided as input;
/// - the input signal corresponds to the Shamir's x coordinate provided as input
/// - the hardcoded application [RLN identifier](crate::public::RLN_IDENTIFIER) corresponds to the RLN identifier provided as input
///
/// Example
/// ```
/// // proof_data is computed as in the example code snippet provided for rln::public::RLN::generate_rln_proof
///
/// // We prepare input for verify_rln_proof API
/// // input_data is `[ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> | signal_len<8> | signal<var>]`
/// // that is [ proof_data || signal_len<8> | signal<var> ]
/// let verify_input = prepare_verify_input(proof_data, &signal);
///
/// let mut input_buffer = Cursor::new(verify_input);
/// let verified = rln.verify_rln_proof(&mut input_buffer).unwrap();
///
/// assert!(verified);
/// ```
#[cfg(not(feature = "stateless"))]
pub fn verify_rln_proof<R: Read>(&self, mut input_data: R) -> Result<bool> {
let mut serialized: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized)?;
let mut all_read = 0;
let proof =
ArkProof::deserialize_compressed(&mut Cursor::new(&serialized[..128].to_vec()))?;
all_read += 128;
let (proof_values, read) = deserialize_proof_values(&serialized[all_read..]);
all_read += read;
let signal_len = usize::try_from(u64::from_le_bytes(
serialized[all_read..all_read + 8].try_into()?,
))?;
all_read += 8;
let signal: Vec<u8> = serialized[all_read..all_read + signal_len].to_vec();
let verified = verify_proof(&self.verification_key, &proof, &proof_values)?;
let x = hash_to_field(&signal);
// Consistency checks to counter proof tampering
Ok(verified && (self.tree.root() == proof_values.root) && (x == proof_values.x))
}
/// Verifies a zkSNARK RLN proof against the provided proof values and a set of allowed Merkle tree roots.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of the RLN zkSNARK proof concatenated with a serialization of the circuit output values and the signal information, i.e. `[ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> | signal_len<8> | signal<var>]`
/// - `roots_data`: a reader for the serialization of a vector of roots, i.e. `[ number_of_roots<8> | root_1<32> | ... | root_n<32> ]` (number_of_roots is an uint64 in little-endian, roots are serialized using `rln::utils::fr_to_bytes_le`)
///
/// The function returns true if the zkSNARK proof is valid with respect to the provided circuit output values, signal and roots. Returns false otherwise.
///
/// Note that contrary to [`verify_rln_proof`](crate::public::RLN::verify_rln_proof), this function does not check if the internal Merkle tree root corresponds to the root provided as input, but rather checks if the root provided as input in `input_data` corresponds to one of the roots serialized in `roots_data`.
///
/// If `roots_data` contains no root (is empty), root validation is skipped and the proof will be correctly verified only if the other proof values results valid (i.e., zk-proof, signal, x-coordinate, RLN identifier)
///
/// Example
/// ```
/// // proof_data is computed as in the example code snippet provided for rln::public::RLN::generate_rln_proof
///
/// // If no roots is provided, proof validation is skipped and if the remaining proof values are valid, the proof will be correctly verified
/// let mut input_buffer = Cursor::new(proof_data);
/// let mut roots_serialized: Vec<u8> = Vec::new();
/// let mut roots_buffer = Cursor::new(roots_serialized.clone());
/// let verified = rln
/// .verify_with_roots(&mut input_buffer.clone(), &mut roots_buffer)
/// .unwrap();
///
/// assert!(verified);
///
/// // We serialize in the roots buffer some random values and we check that the proof is not verified since doesn't contain the correct root the proof refers to
/// for _ in 0..5 {
/// roots_serialized.append(&mut fr_to_bytes_le(&Fr::rand(&mut rng)));
/// }
/// roots_buffer = Cursor::new(roots_serialized.clone());
/// let verified = rln
/// .verify_with_roots(&mut input_buffer.clone(), &mut roots_buffer)
/// .unwrap();
///
/// assert!(verified == false);
///
/// // We get the root of the tree obtained adding one leaf per time
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.get_root(&mut buffer).unwrap();
/// let (root, _) = bytes_le_to_fr(&buffer.into_inner());
///
/// // We add the real root and we check if now the proof is verified
/// roots_serialized.append(&mut fr_to_bytes_le(&root));
/// roots_buffer = Cursor::new(roots_serialized.clone());
/// let verified = rln
/// .verify_with_roots(&mut input_buffer, &mut roots_buffer)
/// .unwrap();
///
/// assert!(verified);
/// ```
pub fn verify_with_roots<R: Read>(&self, mut input_data: R, mut roots_data: R) -> Result<bool> {
let mut serialized: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized)?;
let mut all_read = 0;
let proof =
ArkProof::deserialize_compressed(&mut Cursor::new(&serialized[..128].to_vec()))?;
all_read += 128;
let (proof_values, read) = deserialize_proof_values(&serialized[all_read..]);
all_read += read;
let signal_len = usize::try_from(u64::from_le_bytes(
serialized[all_read..all_read + 8].try_into()?,
))?;
all_read += 8;
let signal: Vec<u8> = serialized[all_read..all_read + signal_len].to_vec();
let verified = verify_proof(&self.verification_key, &proof, &proof_values)?;
// First consistency checks to counter proof tampering
let x = hash_to_field(&signal);
let partial_result = verified && (x == proof_values.x);
// We skip root validation if proof is already invalid
if !partial_result {
return Ok(partial_result);
}
// We read passed roots
let mut roots_serialized: Vec<u8> = Vec::new();
roots_data.read_to_end(&mut roots_serialized)?;
// The vector where we'll store read roots
let mut roots: Vec<Fr> = Vec::new();
// We expect each root to be fr_byte_size() bytes long.
let fr_size = fr_byte_size();
// We read the buffer and convert to Fr as much as we can
all_read = 0;
while all_read + fr_size <= roots_serialized.len() {
let (root, read) = bytes_le_to_fr(&roots_serialized[all_read..]);
all_read += read;
roots.push(root);
}
// We validate the root
let roots_verified: bool = if roots.is_empty() {
// If no root is passed in roots_buffer, we skip proof's root check
true
} else {
// Otherwise we check if proof's root is contained in the passed buffer
roots.contains(&proof_values.root)
};
// We combine all checks
Ok(partial_result && roots_verified)
}
////////////////////////////////////////////////////////
// Utils
////////////////////////////////////////////////////////
/// Returns an identity secret and identity commitment pair.
///
/// The identity commitment is the Poseidon hash of the identity secret.
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the identity secret and identity commitment (serialization done with `rln::utils::fr_to_bytes_le`)
///
/// Example
/// ```
/// use rln::protocol::*;
///
/// // We generate an identity pair
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.key_gen(&mut buffer).unwrap();
///
/// // We serialize_compressed the keygen output
/// let (identity_secret_hash, id_commitment) = deserialize_identity_pair(buffer.into_inner());
/// ```
pub fn key_gen<W: Write>(&self, mut output_data: W) -> Result<()> {
let (identity_secret_hash, id_commitment) = keygen();
output_data.write_all(&fr_to_bytes_le(&identity_secret_hash))?;
output_data.write_all(&fr_to_bytes_le(&id_commitment))?;
Ok(())
}
/// Returns an identity trapdoor, nullifier, secret and commitment tuple.
///
/// The identity secret is the Poseidon hash of the identity trapdoor and identity nullifier.
///
/// The identity commitment is the Poseidon hash of the identity secret.
///
/// Generated credentials are compatible with [Semaphore](https://semaphore.appliedzkp.org/docs/guides/identities)'s credentials.
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the identity trapdoor, identity nullifier, identity secret and identity commitment (serialization done with `rln::utils::fr_to_bytes_le`)
///
/// Example
/// ```
/// use rln::protocol::*;
///
/// // We generate an identity tuple
/// let mut buffer = Cursor::new(Vec::<u8>::new());
/// rln.extended_key_gen(&mut buffer).unwrap();
///
/// // We serialize_compressed the keygen output
/// let (identity_trapdoor, identity_nullifier, identity_secret_hash, id_commitment) = deserialize_identity_tuple(buffer.into_inner());
/// ```
pub fn extended_key_gen<W: Write>(&self, mut output_data: W) -> Result<()> {
let (identity_trapdoor, identity_nullifier, identity_secret_hash, id_commitment) =
extended_keygen();
output_data.write_all(&fr_to_bytes_le(&identity_trapdoor))?;
output_data.write_all(&fr_to_bytes_le(&identity_nullifier))?;
output_data.write_all(&fr_to_bytes_le(&identity_secret_hash))?;
output_data.write_all(&fr_to_bytes_le(&id_commitment))?;
Ok(())
}
/// Returns an identity secret and identity commitment pair generated using a seed.
///
/// The identity commitment is the Poseidon hash of the identity secret.
///
/// Input values are:
/// - `input_data`: a reader for the byte vector containing the seed
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the identity secret and identity commitment (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le))
///
/// Example
/// ```
/// use rln::protocol::*;
///
/// let seed_bytes: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
///
/// let mut input_buffer = Cursor::new(&seed_bytes);
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// rln.seeded_key_gen(&mut input_buffer, &mut output_buffer)
/// .unwrap();
///
/// // We serialize_compressed the keygen output
/// let (identity_secret_hash, id_commitment) = deserialize_identity_pair(output_buffer.into_inner());
/// ```
pub fn seeded_key_gen<R: Read, W: Write>(
&self,
mut input_data: R,
mut output_data: W,
) -> Result<()> {
let mut serialized: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized)?;
let (identity_secret_hash, id_commitment) = seeded_keygen(&serialized);
output_data.write_all(&fr_to_bytes_le(&identity_secret_hash))?;
output_data.write_all(&fr_to_bytes_le(&id_commitment))?;
Ok(())
}
/// Returns an identity trapdoor, nullifier, secret and commitment tuple generated using a seed.
///
/// The identity secret is the Poseidon hash of the identity trapdoor and identity nullifier.
///
/// The identity commitment is the Poseidon hash of the identity secret.
///
/// Generated credentials are compatible with [Semaphore](https://semaphore.appliedzkp.org/docs/guides/identities)'s credentials.
///
/// Input values are:
/// - `input_data`: a reader for the byte vector containing the seed
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the identity trapdoor, identity nullifier, identity secret and identity commitment (serialization done with `rln::utils::fr_to_bytes_le`)
///
/// Example
/// ```
/// use rln::protocol::*;
///
/// let seed_bytes: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
///
/// let mut input_buffer = Cursor::new(&seed_bytes);
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// rln.seeded_key_gen(&mut input_buffer, &mut output_buffer)
/// .unwrap();
///
/// // We serialize_compressed the keygen output
/// let (identity_trapdoor, identity_nullifier, identity_secret_hash, id_commitment) = deserialize_identity_tuple(buffer.into_inner());
/// ```
pub fn seeded_extended_key_gen<R: Read, W: Write>(
&self,
mut input_data: R,
mut output_data: W,
) -> Result<()> {
let mut serialized: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized)?;
let (identity_trapdoor, identity_nullifier, identity_secret_hash, id_commitment) =
extended_seeded_keygen(&serialized);
output_data.write_all(&fr_to_bytes_le(&identity_trapdoor))?;
output_data.write_all(&fr_to_bytes_le(&identity_nullifier))?;
output_data.write_all(&fr_to_bytes_le(&identity_secret_hash))?;
output_data.write_all(&fr_to_bytes_le(&id_commitment))?;
Ok(())
}
/// Recovers the identity secret from two set of proof values computed for same secret in same epoch with same rln identifier.
///
/// Input values are:
/// - `input_proof_data_1`: a reader for the serialization of a RLN zkSNARK proof concatenated with a serialization of the circuit output values and -optionally- the signal information,
/// i.e. either `[proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32>]`
/// or `[ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> | signal_len<8> | signal<var> ]` (to maintain compatibility with both output of [`generate_rln_proof`](crate::public::RLN::generate_rln_proof) and input of [`verify_rln_proof`](crate::public::RLN::verify_rln_proof))
/// - `input_proof_data_2`: same as `input_proof_data_1`
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the recovered identity secret hash field element if correctly recovered (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le)), a writer receiving an empty byte vector if not.
///
/// Example
/// ```
/// // identity_secret_hash, proof_data_1 and proof_data_2 are computed as in the example code snippet provided for rln::public::RLN::generate_rln_proof using same identity secret, epoch and rln identifier (but not necessarily same signal)
///
/// let mut input_proof_data_1 = Cursor::new(proof_data_1);
/// let mut input_proof_data_2 = Cursor::new(proof_data_2);
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// rln.recover_id_secret(
/// &mut input_proof_data_1,
/// &mut input_proof_data_2,
/// &mut output_buffer,
/// )
/// .unwrap();
///
/// let serialized_identity_secret_hash = output_buffer.into_inner();
///
/// // We ensure that a non-empty value is written to output_buffer
/// assert!(!serialized_identity_secret_hash.is_empty());
///
/// // We check if the recovered identity secret hash corresponds to the original one
/// let (recovered_identity_secret_hash, _) = bytes_le_to_fr(&serialized_identity_secret_hash);
/// assert_eq!(recovered_identity_secret_hash, identity_secret_hash);
/// ```
pub fn recover_id_secret<R: Read, W: Write>(
&self,
mut input_proof_data_1: R,
mut input_proof_data_2: R,
mut output_data: W,
) -> Result<()> {
// We serialize_compressed the two proofs, and we get the corresponding RLNProofValues objects
let mut serialized: Vec<u8> = Vec::new();
input_proof_data_1.read_to_end(&mut serialized)?;
// We skip deserialization of the zk-proof at the beginning
let (proof_values_1, _) = deserialize_proof_values(&serialized[128..]);
let external_nullifier_1 = proof_values_1.external_nullifier;
let mut serialized: Vec<u8> = Vec::new();
input_proof_data_2.read_to_end(&mut serialized)?;
// We skip deserialization of the zk-proof at the beginning
let (proof_values_2, _) = deserialize_proof_values(&serialized[128..]);
let external_nullifier_2 = proof_values_2.external_nullifier;
// We continue only if the proof values are for the same external nullifier (which includes epoch and rln identifier)
// The idea is that proof values that go as input to this function are verified first (with zk-proof verify), hence ensuring validity of external nullifier and other fields.
// Only in case all fields are valid, an external_nullifier for the message will be stored (otherwise signal/proof will be simply discarded)
// If the nullifier matches one already seen, we can recover of identity secret.
if external_nullifier_1 == external_nullifier_2 {
// We extract the two shares
let share1 = (proof_values_1.x, proof_values_1.y);
let share2 = (proof_values_2.x, proof_values_2.y);
// We recover the secret
let recovered_identity_secret_hash = compute_id_secret(share1, share2);
// If an identity secret hash is recovered, we write it to output_data, otherwise nothing will be written.
if let Ok(identity_secret_hash) = recovered_identity_secret_hash {
output_data.write_all(&fr_to_bytes_le(&identity_secret_hash))?;
} else {
return Err(Report::msg("could not extract secret"));
}
}
Ok(())
}
/// Returns the serialization of a [`RLNWitnessInput`] populated from the identity secret, the Merkle tree index, the user message limit, the message id, the external nullifier (which include epoch and rln identifier) and signal.
///
/// Input values are:
/// - `input_data`: a reader for the serialization of `[ identity_secret<32> | id_index<8> | user_message_limit<32> | message_id<32> | external_nullifier<32> | signal_len<8> | signal<var> ]`
///
/// The function returns the corresponding [`RLNWitnessInput`] object serialized using [`rln::protocol::serialize_witness`](crate::protocol::serialize_witness).
#[cfg(not(feature = "stateless"))]
pub fn get_serialized_rln_witness<R: Read>(&mut self, mut input_data: R) -> Result<Vec<u8>> {
// We read input RLN witness and we serialize_compressed it
let mut witness_byte: Vec<u8> = Vec::new();
input_data.read_to_end(&mut witness_byte)?;
let (rln_witness, _) = proof_inputs_to_rln_witness(&mut self.tree, &witness_byte)?;
serialize_witness(&rln_witness)
}
/// Converts a byte serialization of a [`RLNWitnessInput`] object to the corresponding JSON serialization.
///
/// Input values are:
/// - `serialized_witness`: the byte serialization of a [`RLNWitnessInput`] object (serialization done with [`rln::protocol::serialize_witness`](crate::protocol::serialize_witness)).
///
/// The function returns the corresponding JSON encoding of the input [`RLNWitnessInput`] object.
pub fn get_rln_witness_json(&mut self, serialized_witness: &[u8]) -> Result<serde_json::Value> {
let (rln_witness, _) = deserialize_witness(serialized_witness)?;
rln_witness_to_json(&rln_witness)
}
/// Converts a byte serialization of a [`RLNWitnessInput`] object to the corresponding JSON serialization.
/// Before serialization the data will be translated into big int for further calculation in the witness calculator.
///
/// Input values are:
/// - `serialized_witness`: the byte serialization of a [`RLNWitnessInput`] object (serialization done with [`rln::protocol::serialize_witness`](crate::protocol::serialize_witness)).
///
/// The function returns the corresponding JSON encoding of the input [`RLNWitnessInput`] object.
pub fn get_rln_witness_bigint_json(
&mut self,
serialized_witness: &[u8],
) -> Result<serde_json::Value> {
let (rln_witness, _) = deserialize_witness(serialized_witness)?;
rln_witness_to_bigint_json(&rln_witness)
}
/// Closes the connection to the Merkle tree database.
/// This function should be called before the RLN object is dropped.
/// If not called, the connection will be closed when the RLN object is dropped.
/// This improves robustness of the tree.
#[cfg(not(feature = "stateless"))]
pub fn flush(&mut self) -> Result<()> {
self.tree.close_db_connection()
}
}
#[cfg(not(target_arch = "wasm32"))]
impl Default for RLN {
fn default() -> Self {
#[cfg(not(feature = "stateless"))]
{
let tree_height = TEST_TREE_HEIGHT;
let buffer = Cursor::new(json!({}).to_string());
Self::new(tree_height, buffer).unwrap()
}
#[cfg(feature = "stateless")]
Self::new().unwrap()
}
}
/// Hashes an input signal to an element in the working prime field.
///
/// The result is computed as the Keccak256 of the input signal modulo the prime field characteristic.
///
/// Input values are:
/// - `input_data`: a reader for the byte vector containing the input signal.
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the resulting field element (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le))
///
/// Example
/// ```
/// let signal: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
///
/// let mut input_buffer = Cursor::new(&signal);
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// hash(&mut input_buffer, &mut output_buffer)
/// .unwrap();
///
/// // We serialize_compressed the keygen output
/// let field_element = deserialize_field_element(output_buffer.into_inner());
/// ```
pub fn hash<R: Read, W: Write>(mut input_data: R, mut output_data: W) -> Result<()> {
let mut serialized: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized)?;
let hash = hash_to_field(&serialized);
output_data.write_all(&fr_to_bytes_le(&hash))?;
Ok(())
}
/// Hashes a set of elements to a single element in the working prime field, using Poseidon.
///
/// The result is computed as the Poseidon Hash of the input signal.
///
/// Input values are:
/// - `input_data`: a reader for the byte vector containing the input signal.
///
/// Output values are:
/// - `output_data`: a writer receiving the serialization of the resulting field element (serialization done with [`rln::utils::fr_to_bytes_le`](crate::utils::fr_to_bytes_le))
///
/// Example
/// ```
/// let data = vec![hash_to_field(b"foo")];
/// let signal = vec_fr_to_bytes_le(&data);
///
/// let mut input_buffer = Cursor::new(&signal);
/// let mut output_buffer = Cursor::new(Vec::<u8>::new());
/// poseidon_hash(&mut input_buffer, &mut output_buffer)
/// .unwrap();
///
/// // We serialize_compressed the hash output
/// let hash_result = deserialize_field_element(output_buffer.into_inner());
/// ```
pub fn poseidon_hash<R: Read, W: Write>(mut input_data: R, mut output_data: W) -> Result<()> {
let mut serialized: Vec<u8> = Vec::new();
input_data.read_to_end(&mut serialized)?;
let (inputs, _) = bytes_le_to_vec_fr(&serialized)?;
let hash = utils_poseidon_hash(inputs.as_ref());
output_data.write_all(&fr_to_bytes_le(&hash))?;
Ok(())
}