Files
zerokit/rln/src/circuit/iden3calc/graph.rs
Vinh Trịnh 77a8d28965 feat: unify RLN types, refactor public APIs, add full (de)serialization, align FFI/WASM/APIs, simplify errors, update docs/examples, and clean up zerokit (#355)
# Changes

- Unified the `RLN` struct and core protocol types across public, FFI,
and WASM so everything works consistently.
- Fully refactored `protocol.rs` and `public.rs` to clean up the API
surface and make the flow easier to work with.
- Added (de)serialization for `RLN_Proof` and `RLN_ProofValues`, and
matched all C, Nim, WASM, and Node.js examples.
- Aligned FFI and WASM behavior, added missing APIs, and standardized
how witness are created and passed around.
- Reworked the error types, added clearer verification messages, and
simplified the overall error structure.
- Updated variable names, README, Rust docs, and examples across the
repo, updated outdated RLN RFC link.
- Refactored `rln-cli` to use the new public API, removed
serialize-based cli example, and dropped the `eyre` crate.
- Bumped dependencies, fixed CI, fixed `+atomic` flags for latest
nightly Rust and added `Clippy.toml` for better fmt.
- Added a `prelude.rs` file for easier use, cleaned up public access for
types and types import across zerokit modules.
- Separated keygen, proof handling, slashing logic, and witness into
protocol folder.
2025-12-09 19:03:04 +07:00

959 lines
27 KiB
Rust

// This crate is based on the code by iden3. Its preimage can be found here:
// https://github.com/iden3/circom-witnesscalc/blob/5cb365b6e4d9052ecc69d4567fcf5bc061c20e94/src/graph.rs
use std::{
cmp::Ordering,
collections::HashMap,
error::Error,
ops::{Deref, Shl, Shr},
};
use ark_ff::{BigInt, BigInteger, One, PrimeField, Zero};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Compress, Validate};
use rand::Rng;
use ruint::{aliases::U256, uint};
use serde::{Deserialize, Serialize};
use crate::circuit::{iden3calc::proto, Fr};
pub const M: U256 =
uint!(21888242871839275222246405745257275088548364400416034343698204186575808495617_U256);
fn ark_se<S, A: CanonicalSerialize>(a: &A, s: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let mut bytes = vec![];
a.serialize_with_mode(&mut bytes, Compress::Yes)
.map_err(serde::ser::Error::custom)?;
s.serialize_bytes(&bytes)
}
fn ark_de<'de, D, A: CanonicalDeserialize>(data: D) -> Result<A, D::Error>
where
D: serde::de::Deserializer<'de>,
{
let s: Vec<u8> = serde::de::Deserialize::deserialize(data)?;
let a = A::deserialize_with_mode(s.as_slice(), Compress::Yes, Validate::Yes);
a.map_err(serde::de::Error::custom)
}
#[inline(always)]
pub fn fr_to_u256(x: &Fr) -> U256 {
U256::from_limbs(x.into_bigint().0)
}
#[inline(always)]
pub fn u256_to_fr(x: &U256) -> Fr {
Fr::from_bigint(BigInt::new(x.into_limbs())).expect("Failed to convert U256 to Fr")
}
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub enum Operation {
Mul,
Div,
Add,
Sub,
Pow,
Idiv,
Mod,
Eq,
Neq,
Lt,
Gt,
Leq,
Geq,
Land,
Lor,
Shl,
Shr,
Bor,
Band,
Bxor,
}
impl Operation {
// TODO: rewrite to &U256 type
pub fn eval(&self, a: U256, b: U256) -> U256 {
use Operation::*;
match self {
Mul => a.mul_mod(b, M),
Div => {
if b == U256::ZERO {
// as we are simulating a circuit execution with signals
// values all equal to 0, just return 0 here in case of
// division by zero
U256::ZERO
} else {
a.mul_mod(b.inv_mod(M).unwrap(), M)
}
}
Add => a.add_mod(b, M),
Sub => a.add_mod(M - b, M),
Pow => a.pow_mod(b, M),
Mod => a.div_rem(b).1,
Eq => U256::from(a == b),
Neq => U256::from(a != b),
Lt => u_lt(&a, &b),
Gt => u_gt(&a, &b),
Leq => u_lte(&a, &b),
Geq => u_gte(&a, &b),
Land => U256::from(a != U256::ZERO && b != U256::ZERO),
Lor => U256::from(a != U256::ZERO || b != U256::ZERO),
Shl => compute_shl_uint(a, b),
Shr => compute_shr_uint(a, b),
// TODO test with conner case when it is possible to get the number
// bigger then modulus
Bor => a.bitor(b),
Band => a.bitand(b),
// TODO test with conner case when it is possible to get the number
// bigger then modulus
Bxor => a.bitxor(b),
Idiv => a / b,
}
}
pub fn eval_fr(&self, a: Fr, b: Fr) -> Fr {
use Operation::*;
match self {
Mul => a * b,
// We always should return something on the circuit execution.
// So in case of division by 0 we would return 0. And the proof
// should be invalid in the end.
Div => {
if b.is_zero() {
Fr::zero()
} else {
a / b
}
}
Add => a + b,
Sub => a - b,
Idiv => {
if b.is_zero() {
Fr::zero()
} else {
let a_u256 = fr_to_u256(&a);
let b_u256 = fr_to_u256(&b);
u256_to_fr(&(a_u256 / b_u256))
}
}
Mod => {
if b.is_zero() {
Fr::zero()
} else {
let a_u256 = fr_to_u256(&a);
let b_u256 = fr_to_u256(&b);
u256_to_fr(&(a_u256 % b_u256))
}
}
Eq => match a.cmp(&b) {
Ordering::Equal => Fr::one(),
_ => Fr::zero(),
},
Neq => match a.cmp(&b) {
Ordering::Equal => Fr::zero(),
_ => Fr::one(),
},
Lt => u256_to_fr(&u_lt(&fr_to_u256(&a), &fr_to_u256(&b))),
Gt => u256_to_fr(&u_gt(&fr_to_u256(&a), &fr_to_u256(&b))),
Leq => u256_to_fr(&u_lte(&fr_to_u256(&a), &fr_to_u256(&b))),
Geq => u256_to_fr(&u_gte(&fr_to_u256(&a), &fr_to_u256(&b))),
Land => {
if a.is_zero() || b.is_zero() {
Fr::zero()
} else {
Fr::one()
}
}
Lor => {
if a.is_zero() && b.is_zero() {
Fr::zero()
} else {
Fr::one()
}
}
Shl => shl(a, b),
Shr => shr(a, b),
Bor => bit_or(a, b),
Band => bit_and(a, b),
Bxor => bit_xor(a, b),
// TODO implement other operators
_ => unimplemented!("operator {:?} not implemented for Montgomery", self),
}
}
}
impl From<&Operation> for proto::DuoOp {
fn from(v: &Operation) -> Self {
match v {
Operation::Mul => proto::DuoOp::Mul,
Operation::Div => proto::DuoOp::Div,
Operation::Add => proto::DuoOp::Add,
Operation::Sub => proto::DuoOp::Sub,
Operation::Pow => proto::DuoOp::Pow,
Operation::Idiv => proto::DuoOp::Idiv,
Operation::Mod => proto::DuoOp::Mod,
Operation::Eq => proto::DuoOp::Eq,
Operation::Neq => proto::DuoOp::Neq,
Operation::Lt => proto::DuoOp::Lt,
Operation::Gt => proto::DuoOp::Gt,
Operation::Leq => proto::DuoOp::Leq,
Operation::Geq => proto::DuoOp::Geq,
Operation::Land => proto::DuoOp::Land,
Operation::Lor => proto::DuoOp::Lor,
Operation::Shl => proto::DuoOp::Shl,
Operation::Shr => proto::DuoOp::Shr,
Operation::Bor => proto::DuoOp::Bor,
Operation::Band => proto::DuoOp::Band,
Operation::Bxor => proto::DuoOp::Bxor,
}
}
}
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub enum UnoOperation {
Neg,
Id, // identity - just return self
}
impl UnoOperation {
pub fn eval(&self, a: U256) -> U256 {
match self {
UnoOperation::Neg => {
if a == U256::ZERO {
U256::ZERO
} else {
M - a
}
}
UnoOperation::Id => a,
}
}
pub fn eval_fr(&self, a: Fr) -> Fr {
match self {
UnoOperation::Neg => {
if a.is_zero() {
Fr::zero()
} else {
let mut x = Fr::MODULUS;
x.sub_with_borrow(&a.into_bigint());
Fr::from_bigint(x).unwrap()
}
}
_ => unimplemented!("uno operator {:?} not implemented for Montgomery", self),
}
}
}
impl From<&UnoOperation> for proto::UnoOp {
fn from(v: &UnoOperation) -> Self {
match v {
UnoOperation::Neg => proto::UnoOp::Neg,
UnoOperation::Id => proto::UnoOp::Id,
}
}
}
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub enum TresOperation {
TernCond,
}
impl TresOperation {
pub fn eval(&self, a: U256, b: U256, c: U256) -> U256 {
match self {
TresOperation::TernCond => {
if a == U256::ZERO {
c
} else {
b
}
}
}
}
pub fn eval_fr(&self, a: Fr, b: Fr, c: Fr) -> Fr {
match self {
TresOperation::TernCond => {
if a.is_zero() {
c
} else {
b
}
}
}
}
}
impl From<&TresOperation> for proto::TresOp {
fn from(v: &TresOperation) -> Self {
match v {
TresOperation::TernCond => proto::TresOp::TernCond,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub enum Node {
Input(usize),
Constant(U256),
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
MontConstant(Fr),
UnoOp(UnoOperation, usize),
Op(Operation, usize, usize),
TresOp(TresOperation, usize, usize, usize),
}
// TODO remove pub from Vec<Node>
#[derive(Default)]
pub struct Nodes(pub Vec<Node>);
impl Nodes {
pub fn new() -> Self {
Nodes(Vec::new())
}
pub fn to_const(&self, idx: NodeIdx) -> Result<U256, NodeConstErr> {
let me = self.0.get(idx.0).ok_or(NodeConstErr::EmptyNode(idx))?;
match me {
Node::Constant(v) => Ok(*v),
Node::UnoOp(op, a) => Ok(op.eval(self.to_const(NodeIdx(*a))?)),
Node::Op(op, a, b) => {
Ok(op.eval(self.to_const(NodeIdx(*a))?, self.to_const(NodeIdx(*b))?))
}
Node::TresOp(op, a, b, c) => Ok(op.eval(
self.to_const(NodeIdx(*a))?,
self.to_const(NodeIdx(*b))?,
self.to_const(NodeIdx(*c))?,
)),
Node::Input(_) => Err(NodeConstErr::InputSignal),
Node::MontConstant(_) => {
panic!("MontConstant should not be used here")
}
}
}
pub fn push(&mut self, n: Node) -> NodeIdx {
self.0.push(n);
NodeIdx(self.0.len() - 1)
}
pub fn get(&self, idx: NodeIdx) -> Option<&Node> {
self.0.get(idx.0)
}
}
impl Deref for Nodes {
type Target = Vec<Node>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Debug, Copy, Clone)]
pub struct NodeIdx(pub usize);
impl From<usize> for NodeIdx {
fn from(v: usize) -> Self {
NodeIdx(v)
}
}
#[derive(Debug)]
pub enum NodeConstErr {
EmptyNode(NodeIdx),
InputSignal,
}
impl std::fmt::Display for NodeConstErr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
NodeConstErr::EmptyNode(idx) => {
write!(f, "empty node at index {}", idx.0)
}
NodeConstErr::InputSignal => {
write!(f, "input signal is not a constant")
}
}
}
}
impl Error for NodeConstErr {}
fn compute_shl_uint(a: U256, b: U256) -> U256 {
debug_assert!(b.lt(&U256::from(256)));
let ls_limb = b.as_limbs()[0];
a.shl(ls_limb as usize)
}
fn compute_shr_uint(a: U256, b: U256) -> U256 {
debug_assert!(b.lt(&U256::from(256)));
let ls_limb = b.as_limbs()[0];
a.shr(ls_limb as usize)
}
/// All references must be backwards.
fn assert_valid(nodes: &[Node]) {
for (i, &node) in nodes.iter().enumerate() {
if let Node::Op(_, a, b) = node {
assert!(a < i);
assert!(b < i);
} else if let Node::UnoOp(_, a) = node {
assert!(a < i);
} else if let Node::TresOp(_, a, b, c) = node {
assert!(a < i);
assert!(b < i);
assert!(c < i);
}
}
}
pub fn optimize(nodes: &mut Vec<Node>, outputs: &mut [usize]) {
tree_shake(nodes, outputs);
propagate(nodes);
value_numbering(nodes, outputs);
constants(nodes);
tree_shake(nodes, outputs);
montgomery_form(nodes);
}
pub fn evaluate(nodes: &[Node], inputs: &[U256], outputs: &[usize]) -> Vec<Fr> {
// assert_valid(nodes);
// Evaluate the graph.
let mut values = Vec::with_capacity(nodes.len());
for &node in nodes.iter() {
let value = match node {
Node::Constant(c) => u256_to_fr(&c),
Node::MontConstant(c) => c,
Node::Input(i) => u256_to_fr(&inputs[i]),
Node::Op(op, a, b) => op.eval_fr(values[a], values[b]),
Node::UnoOp(op, a) => op.eval_fr(values[a]),
Node::TresOp(op, a, b, c) => op.eval_fr(values[a], values[b], values[c]),
};
values.push(value);
}
// Convert from Montgomery form and return the outputs.
let mut out = vec![Fr::from(0); outputs.len()];
for i in 0..outputs.len() {
out[i] = values[outputs[i]];
}
out
}
/// Constant propagation
pub fn propagate(nodes: &mut [Node]) {
assert_valid(nodes);
for i in 0..nodes.len() {
if let Node::Op(op, a, b) = nodes[i] {
if let (Node::Constant(va), Node::Constant(vb)) = (nodes[a], nodes[b]) {
nodes[i] = Node::Constant(op.eval(va, vb));
} else if a == b {
// Not constant but equal
use Operation::*;
if let Some(c) = match op {
Eq | Leq | Geq => Some(true),
Neq | Lt | Gt => Some(false),
_ => None,
} {
nodes[i] = Node::Constant(U256::from(c));
}
}
} else if let Node::UnoOp(op, a) = nodes[i] {
if let Node::Constant(va) = nodes[a] {
nodes[i] = Node::Constant(op.eval(va));
}
} else if let Node::TresOp(op, a, b, c) = nodes[i] {
if let (Node::Constant(va), Node::Constant(vb), Node::Constant(vc)) =
(nodes[a], nodes[b], nodes[c])
{
nodes[i] = Node::Constant(op.eval(va, vb, vc));
}
}
}
}
/// Remove unused nodes
pub fn tree_shake(nodes: &mut Vec<Node>, outputs: &mut [usize]) {
assert_valid(nodes);
// Mark all nodes that are used.
let mut used = vec![false; nodes.len()];
for &i in outputs.iter() {
used[i] = true;
}
// Work backwards from end as all references are backwards.
for i in (0..nodes.len()).rev() {
if used[i] {
if let Node::Op(_, a, b) = nodes[i] {
used[a] = true;
used[b] = true;
}
if let Node::UnoOp(_, a) = nodes[i] {
used[a] = true;
}
if let Node::TresOp(_, a, b, c) = nodes[i] {
used[a] = true;
used[b] = true;
used[c] = true;
}
}
}
// Remove unused nodes
let n = nodes.len();
let mut retain = used.iter();
nodes.retain(|_| *retain.next().unwrap());
// Renumber references.
let mut renumber = vec![None; n];
let mut index = 0;
for (i, &used) in used.iter().enumerate() {
if used {
renumber[i] = Some(index);
index += 1;
}
}
assert_eq!(index, nodes.len());
for (&used, renumber) in used.iter().zip(renumber.iter()) {
assert_eq!(used, renumber.is_some());
}
// Renumber references.
for node in nodes.iter_mut() {
if let Node::Op(_, a, b) = node {
*a = renumber[*a].unwrap();
*b = renumber[*b].unwrap();
}
if let Node::UnoOp(_, a) = node {
*a = renumber[*a].unwrap();
}
if let Node::TresOp(_, a, b, c) = node {
*a = renumber[*a].unwrap();
*b = renumber[*b].unwrap();
*c = renumber[*c].unwrap();
}
}
for output in outputs.iter_mut() {
*output = renumber[*output].unwrap();
}
}
/// Randomly evaluate the graph
fn random_eval(nodes: &mut [Node]) -> Vec<U256> {
let mut rng = rand::thread_rng();
let mut values = Vec::with_capacity(nodes.len());
let mut inputs = HashMap::new();
let mut prfs = HashMap::new();
let mut prfs_uno = HashMap::new();
let mut prfs_tres = HashMap::new();
for node in nodes.iter() {
use Operation::*;
let value = match node {
// Constants evaluate to themselves
Node::Constant(c) => *c,
Node::MontConstant(_) => unimplemented!("should not be used"),
// Algebraic Ops are evaluated directly
// Since the field is large, by Swartz-Zippel if
// two values are the same then they are likely algebraically equal.
Node::Op(op @ (Add | Sub | Mul), a, b) => op.eval(values[*a], values[*b]),
// Input and non-algebraic ops are random functions
// TODO: https://github.com/recmo/uint/issues/95 and use .gen_range(..M)
Node::Input(i) => *inputs.entry(*i).or_insert_with(|| rng.gen::<U256>() % M),
Node::Op(op, a, b) => *prfs
.entry((*op, values[*a], values[*b]))
.or_insert_with(|| rng.gen::<U256>() % M),
Node::UnoOp(op, a) => *prfs_uno
.entry((*op, values[*a]))
.or_insert_with(|| rng.gen::<U256>() % M),
Node::TresOp(op, a, b, c) => *prfs_tres
.entry((*op, values[*a], values[*b], values[*c]))
.or_insert_with(|| rng.gen::<U256>() % M),
};
values.push(value);
}
values
}
/// Value numbering
pub fn value_numbering(nodes: &mut [Node], outputs: &mut [usize]) {
assert_valid(nodes);
// Evaluate the graph in random field elements.
let values = random_eval(nodes);
// Find all nodes with the same value.
let mut value_map = HashMap::new();
for (i, &value) in values.iter().enumerate() {
value_map.entry(value).or_insert_with(Vec::new).push(i);
}
// For nodes that are the same, pick the first index.
let renumber: Vec<_> = values.into_iter().map(|v| value_map[&v][0]).collect();
// Renumber references.
for node in nodes.iter_mut() {
if let Node::Op(_, a, b) = node {
*a = renumber[*a];
*b = renumber[*b];
}
if let Node::UnoOp(_, a) = node {
*a = renumber[*a];
}
if let Node::TresOp(_, a, b, c) = node {
*a = renumber[*a];
*b = renumber[*b];
*c = renumber[*c];
}
}
for output in outputs.iter_mut() {
*output = renumber[*output];
}
}
/// Probabilistic constant determination
pub fn constants(nodes: &mut [Node]) {
assert_valid(nodes);
// Evaluate the graph in random field elements.
let values_a = random_eval(nodes);
let values_b = random_eval(nodes);
// Find all nodes with the same value.
for i in 0..nodes.len() {
if let Node::Constant(_) = nodes[i] {
continue;
}
if values_a[i] == values_b[i] {
nodes[i] = Node::Constant(values_a[i]);
}
}
}
/// Convert to Montgomery form
pub fn montgomery_form(nodes: &mut [Node]) {
for node in nodes.iter_mut() {
use Node::*;
use Operation::*;
match node {
Constant(c) => *node = MontConstant(u256_to_fr(c)),
MontConstant(..) => (),
Input(..) => (),
Op(
Mul | Div | Add | Sub | Idiv | Mod | Eq | Neq | Lt | Gt | Leq | Geq | Land | Lor
| Shl | Shr | Bor | Band | Bxor,
..,
) => (),
Op(op @ Pow, ..) => unimplemented!("Operators Montgomery form: {:?}", op),
UnoOp(UnoOperation::Neg, ..) => (),
UnoOp(op, ..) => unimplemented!("Uno Operators Montgomery form: {:?}", op),
TresOp(TresOperation::TernCond, ..) => (),
}
}
}
fn shl(a: Fr, b: Fr) -> Fr {
if b.is_zero() {
return a;
}
if b.cmp(&Fr::from(Fr::MODULUS_BIT_SIZE)).is_ge() {
return Fr::zero();
}
let n = b.into_bigint().0[0] as u32;
let a = a.into_bigint();
Fr::from_bigint(a << n).unwrap()
}
fn shr(a: Fr, b: Fr) -> Fr {
if b.is_zero() {
return a;
}
match b.cmp(&Fr::from(254u64)) {
Ordering::Equal => return Fr::zero(),
Ordering::Greater => return Fr::zero(),
_ => (),
};
let mut n = b.into_bigint().to_bytes_le()[0];
let mut result = a.into_bigint();
let c = result.as_mut();
while n >= 64 {
for i in 0..3 {
c[i as usize] = c[(i + 1) as usize];
}
c[3] = 0;
n -= 64;
}
if n == 0 {
return Fr::from_bigint(result).unwrap();
}
let mask: u64 = (1 << n) - 1;
let mut carrier: u64 = c[3] & mask;
c[3] >>= n;
for i in (0..3).rev() {
let new_carrier = c[i] & mask;
c[i] = (c[i] >> n) | (carrier << (64 - n));
carrier = new_carrier;
}
Fr::from_bigint(result).unwrap()
}
fn bit_and(a: Fr, b: Fr) -> Fr {
let a = a.into_bigint();
let b = b.into_bigint();
let c: [u64; 4] = [
a.0[0] & b.0[0],
a.0[1] & b.0[1],
a.0[2] & b.0[2],
a.0[3] & b.0[3],
];
let mut d: BigInt<4> = BigInt::new(c);
if d > Fr::MODULUS {
d.sub_with_borrow(&Fr::MODULUS);
}
Fr::from_bigint(d).unwrap()
}
fn bit_or(a: Fr, b: Fr) -> Fr {
let a = a.into_bigint();
let b = b.into_bigint();
let c: [u64; 4] = [
a.0[0] | b.0[0],
a.0[1] | b.0[1],
a.0[2] | b.0[2],
a.0[3] | b.0[3],
];
let mut d: BigInt<4> = BigInt::new(c);
if d > Fr::MODULUS {
d.sub_with_borrow(&Fr::MODULUS);
}
Fr::from_bigint(d).unwrap()
}
fn bit_xor(a: Fr, b: Fr) -> Fr {
let a = a.into_bigint();
let b = b.into_bigint();
let c: [u64; 4] = [
a.0[0] ^ b.0[0],
a.0[1] ^ b.0[1],
a.0[2] ^ b.0[2],
a.0[3] ^ b.0[3],
];
let mut d: BigInt<4> = BigInt::new(c);
if d > Fr::MODULUS {
d.sub_with_borrow(&Fr::MODULUS);
}
Fr::from_bigint(d).unwrap()
}
// M / 2
const HALF_M: U256 =
uint!(10944121435919637611123202872628637544274182200208017171849102093287904247808_U256);
fn u_gte(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a >= b),
(true, false) => uint!(0_U256),
(false, true) => uint!(1_U256),
(true, true) => U256::from(a >= b),
}
}
fn u_lte(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a <= b),
(true, false) => uint!(1_U256),
(false, true) => uint!(0_U256),
(true, true) => U256::from(a <= b),
}
}
fn u_gt(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a > b),
(true, false) => uint!(0_U256),
(false, true) => uint!(1_U256),
(true, true) => U256::from(a > b),
}
}
fn u_lt(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a < b),
(true, false) => uint!(1_U256),
(false, true) => uint!(0_U256),
(true, true) => U256::from(a < b),
}
}
#[cfg(test)]
mod test {
use std::{ops::Div, str::FromStr};
use ruint::uint;
use super::*;
#[test]
fn test_ok() {
let a = Fr::from(4u64);
let b = Fr::from(2u64);
let c = shl(a, b);
assert_eq!(c.cmp(&Fr::from(16u64)), Ordering::Equal)
}
#[test]
fn test_div() {
assert_eq!(
Operation::Div.eval_fr(Fr::from(2u64), Fr::from(3u64)),
Fr::from_str(
"7296080957279758407415468581752425029516121466805344781232734728858602831873"
)
.unwrap()
);
assert_eq!(
Operation::Div.eval_fr(Fr::from(6u64), Fr::from(2u64)),
Fr::from_str("3").unwrap()
);
assert_eq!(
Operation::Div.eval_fr(Fr::from(7u64), Fr::from(2u64)),
Fr::from_str(
"10944121435919637611123202872628637544274182200208017171849102093287904247812"
)
.unwrap()
);
}
#[test]
fn test_idiv() {
assert_eq!(
Operation::Idiv.eval_fr(Fr::from(2u64), Fr::from(3u64)),
Fr::from_str("0").unwrap()
);
assert_eq!(
Operation::Idiv.eval_fr(Fr::from(6u64), Fr::from(2u64)),
Fr::from_str("3").unwrap()
);
assert_eq!(
Operation::Idiv.eval_fr(Fr::from(7u64), Fr::from(2u64)),
Fr::from_str("3").unwrap()
);
}
#[test]
fn test_fr_mod() {
assert_eq!(
Operation::Mod.eval_fr(Fr::from(7u64), Fr::from(2u64)),
Fr::from_str("1").unwrap()
);
assert_eq!(
Operation::Mod.eval_fr(Fr::from(7u64), Fr::from(9u64)),
Fr::from_str("7").unwrap()
);
}
#[test]
fn test_u_gte() {
let result = u_gte(&uint!(10_U256), &uint!(3_U256));
assert_eq!(result, uint!(1_U256));
let result = u_gte(&uint!(3_U256), &uint!(3_U256));
assert_eq!(result, uint!(1_U256));
let result = u_gte(&uint!(2_U256), &uint!(3_U256));
assert_eq!(result, uint!(0_U256));
// -1 >= 3 => 0
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495616_U256
),
&uint!(3_U256),
);
assert_eq!(result, uint!(0_U256));
// -1 >= -2 => 1
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495616_U256
),
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
);
assert_eq!(result, uint!(1_U256));
// -2 >= -1 => 0
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495616_U256
),
);
assert_eq!(result, uint!(0_U256));
// -2 == -2 => 1
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
);
assert_eq!(result, uint!(1_U256));
}
#[test]
fn test_x() {
let x = M.div(uint!(2_U256));
println!("x: {:?}", x.as_limbs());
println!("x: {M}");
}
#[test]
fn test_2() {
let nodes: Vec<Node> = vec![];
// let node = nodes[0];
let node = nodes.first();
println!("{node:?}");
}
}