mirror of
https://github.com/JHUAPL/PINE.git
synced 2026-01-10 23:18:04 -05:00
This includes two major features: 1. HTML view of CDA documents 2. simpletransformers-based NLP pipeline
55 lines
2.1 KiB
JSON
55 lines
2.1 KiB
JSON
[
|
|
{
|
|
"_id": "5babb6ee4eb7dd2c39b9671c",
|
|
"title": "Apache OpenNLP Named Entity Recognition",
|
|
"description": "Apache's open source natural language processing toolkit for named entity recognition (NER). See https://opennlp.apache.org/ for more information. This is the default pipeline used for NER.",
|
|
"name": "opennlp",
|
|
"parameters": {
|
|
"cutoff": "integer",
|
|
"iterations":" integer"
|
|
}
|
|
},
|
|
{
|
|
"_id": "5babb6ee4eb7dd2c39b9671d",
|
|
"title": "SpaCy Named Entity Recognition",
|
|
"description": "spaCy is a free open-source library for Natural Language Processing in Python. It features NER, POS tagging, dependency parsing, word vectors and more",
|
|
"name": "spaCy",
|
|
"parameters": {
|
|
"n_iter": "integer",
|
|
"dropout": "float"
|
|
}
|
|
},
|
|
{
|
|
"_id": "5babb6ee4eb7dd2c39b9671f",
|
|
"title": "Stanford CoreNLP Named Entity Recognition",
|
|
"description": "Stanford's natural language processing toolkit for named entity recognition (NER). See https://stanfordnlp.github.io/CoreNLP/ for more information.",
|
|
"name": "corenlp",
|
|
"parameters": {
|
|
"max_left": "integer",
|
|
"use_class_feature": [true, false],
|
|
"use_word": [true, false],
|
|
"use_ngrams": [true, false],
|
|
"no_mid_ngrams": [true, false],
|
|
"max_ngram_length": "integer",
|
|
"use_prev": [true, false],
|
|
"use_next": [true, false],
|
|
"use_disjunctive": [true, false],
|
|
"use_sequences": [true, false],
|
|
"use_prev_sequences": [true, false],
|
|
"use_type_seqs": [true, false],
|
|
"use_type_seqs2": [true, false],
|
|
"use_type_y_sequences": [true, false]
|
|
}
|
|
},
|
|
{
|
|
"_id": "5babb6ee4eb7dd2c39b96720",
|
|
"title": "SimpleTransformers - Bio-ClinicalBERT",
|
|
"description": "SimpleTransformers models.",
|
|
"name": "simpletransformers",
|
|
"parameters": {
|
|
"training_batch_size": "integer",
|
|
"num_train_epochs": "integer"
|
|
}
|
|
}
|
|
]
|