mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-10 05:28:07 -05:00
Fix predict covariance (#973)
* Fix predict covariance * Remove trailing whitespace and unused return parameters
This commit is contained in:
@@ -29,10 +29,9 @@ show_animation = True
|
||||
|
||||
def ekf_slam(xEst, PEst, u, z):
|
||||
# Predict
|
||||
S = STATE_SIZE
|
||||
G, Fx = jacob_motion(xEst[0:S], u)
|
||||
xEst[0:S] = motion_model(xEst[0:S], u)
|
||||
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
|
||||
G, Fx = jacob_motion(xEst, u)
|
||||
xEst[0:STATE_SIZE] = motion_model(xEst[0:STATE_SIZE], u)
|
||||
PEst = G.T @ PEst @ G + Fx.T @ Cx @ Fx
|
||||
initP = np.eye(2)
|
||||
|
||||
# Update
|
||||
@@ -120,7 +119,7 @@ def jacob_motion(x, u):
|
||||
[0.0, 0.0, DT * u[0, 0] * math.cos(x[2, 0])],
|
||||
[0.0, 0.0, 0.0]], dtype=float)
|
||||
|
||||
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
|
||||
G = np.eye(len(x)) + Fx.T @ jF @ Fx
|
||||
|
||||
return G, Fx,
|
||||
|
||||
|
||||
@@ -63,27 +63,27 @@ Take care to note the difference between :math:`X` (state) and :math:`x`
|
||||
original author: Atsushi Sakai (@Atsushi_twi)
|
||||
notebook author: Andrew Tu (drewtu2)
|
||||
"""
|
||||
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
%matplotlib notebook
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
|
||||
# EKF state covariance
|
||||
Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)])**2 # Change in covariance
|
||||
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.2, np.deg2rad(1.0)])**2 # Sensor Noise
|
||||
Rsim = np.diag([1.0, np.deg2rad(10.0)])**2 # Process Noise
|
||||
|
||||
|
||||
DT = 0.1 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
MAX_RANGE = 20.0 # maximum observation range
|
||||
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
|
||||
STATE_SIZE = 3 # State size [x,y,yaw]
|
||||
LM_SIZE = 2 # LM state size [x,y]
|
||||
|
||||
|
||||
show_animation = True
|
||||
|
||||
Algorithm Walk through
|
||||
@@ -97,23 +97,22 @@ the estimated state and measurements
|
||||
|
||||
def ekf_slam(xEst, PEst, u, z):
|
||||
"""
|
||||
Performs an iteration of EKF SLAM from the available information.
|
||||
|
||||
Performs an iteration of EKF SLAM from the available information.
|
||||
|
||||
:param xEst: the belief in last position
|
||||
:param PEst: the uncertainty in last position
|
||||
:param u: the control function applied to the last position
|
||||
:param u: the control function applied to the last position
|
||||
:param z: measurements at this step
|
||||
:returns: the next estimated position and associated covariance
|
||||
"""
|
||||
S = STATE_SIZE
|
||||
|
||||
|
||||
# Predict
|
||||
xEst, PEst, G, Fx = predict(xEst, PEst, u)
|
||||
xEst, PEst = predict(xEst, PEst, u)
|
||||
initP = np.eye(2)
|
||||
|
||||
|
||||
# Update
|
||||
xEst, PEst = update(xEst, PEst, u, z, initP)
|
||||
|
||||
xEst, PEst = update(xEst, PEst, z, initP)
|
||||
|
||||
return xEst, PEst
|
||||
|
||||
|
||||
@@ -170,26 +169,25 @@ the landmarks.
|
||||
def predict(xEst, PEst, u):
|
||||
"""
|
||||
Performs the prediction step of EKF SLAM
|
||||
|
||||
|
||||
:param xEst: nx1 state vector
|
||||
:param PEst: nxn covariance matrix
|
||||
:param u: 2x1 control vector
|
||||
:returns: predicted state vector, predicted covariance, jacobian of control vector, transition fx
|
||||
"""
|
||||
S = STATE_SIZE
|
||||
G, Fx = jacob_motion(xEst[0:S], u)
|
||||
xEst[0:S] = motion_model(xEst[0:S], u)
|
||||
G, Fx = jacob_motion(xEst, u)
|
||||
xEst[0:STATE_SIZE] = motion_model(xEst[0:STATE_SIZE], u)
|
||||
# Fx is an an identity matrix of size (STATE_SIZE)
|
||||
# sigma = G*sigma*G.T + Noise
|
||||
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
|
||||
return xEst, PEst, G, Fx
|
||||
PEst = G.T @ PEst @ G + Fx.T @ Cx @ Fx
|
||||
return xEst, PEst
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
def motion_model(x, u):
|
||||
"""
|
||||
Computes the motion model based on current state and input function.
|
||||
|
||||
|
||||
:param x: 3x1 pose estimation
|
||||
:param u: 2x1 control input [v; w]
|
||||
:returns: the resulting state after the control function is applied
|
||||
@@ -197,11 +195,11 @@ the landmarks.
|
||||
F = np.array([[1.0, 0, 0],
|
||||
[0, 1.0, 0],
|
||||
[0, 0, 1.0]])
|
||||
|
||||
|
||||
B = np.array([[DT * math.cos(x[2, 0]), 0],
|
||||
[DT * math.sin(x[2, 0]), 0],
|
||||
[0.0, DT]])
|
||||
|
||||
|
||||
x = (F @ x) + (B @ u)
|
||||
return x
|
||||
|
||||
@@ -261,22 +259,21 @@ the changing uncertainty.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
def update(xEst, PEst, u, z, initP):
|
||||
def update(xEst, PEst, z, initP):
|
||||
"""
|
||||
Performs the update step of EKF SLAM
|
||||
|
||||
|
||||
:param xEst: nx1 the predicted pose of the system and the pose of the landmarks
|
||||
:param PEst: nxn the predicted covariance
|
||||
:param u: 2x1 the control function
|
||||
:param z: the measurements read at new position
|
||||
:param initP: 2x2 an identity matrix acting as the initial covariance
|
||||
:returns: the updated state and covariance for the system
|
||||
"""
|
||||
for iz in range(len(z[:, 0])): # for each observation
|
||||
minid = search_correspond_LM_ID(xEst, PEst, z[iz, 0:2]) # associate to a known landmark
|
||||
|
||||
|
||||
nLM = calc_n_LM(xEst) # number of landmarks we currently know about
|
||||
|
||||
|
||||
if minid == nLM: # Landmark is a NEW landmark
|
||||
print("New LM")
|
||||
# Extend state and covariance matrix
|
||||
@@ -285,14 +282,14 @@ the changing uncertainty.
|
||||
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
|
||||
xEst = xAug
|
||||
PEst = PAug
|
||||
|
||||
|
||||
lm = get_LM_Pos_from_state(xEst, minid)
|
||||
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)
|
||||
|
||||
|
||||
K = (PEst @ H.T) @ np.linalg.inv(S) # Calculate Kalman Gain
|
||||
xEst = xEst + (K @ y)
|
||||
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst
|
||||
|
||||
|
||||
xEst[2] = pi_2_pi(xEst[2])
|
||||
return xEst, PEst
|
||||
|
||||
@@ -302,7 +299,7 @@ the changing uncertainty.
|
||||
def calc_innovation(lm, xEst, PEst, z, LMid):
|
||||
"""
|
||||
Calculates the innovation based on expected position and landmark position
|
||||
|
||||
|
||||
:param lm: landmark position
|
||||
:param xEst: estimated position/state
|
||||
:param PEst: estimated covariance
|
||||
@@ -315,19 +312,19 @@ the changing uncertainty.
|
||||
zangle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]
|
||||
zp = np.array([[math.sqrt(q), pi_2_pi(zangle)]])
|
||||
# zp is the expected measurement based on xEst and the expected landmark position
|
||||
|
||||
|
||||
y = (z - zp).T # y = innovation
|
||||
y[1] = pi_2_pi(y[1])
|
||||
|
||||
|
||||
H = jacobH(q, delta, xEst, LMid + 1)
|
||||
S = H @ PEst @ H.T + Cx[0:2, 0:2]
|
||||
|
||||
|
||||
return y, S, H
|
||||
|
||||
|
||||
def jacobH(q, delta, x, i):
|
||||
"""
|
||||
Calculates the jacobian of the measurement function
|
||||
|
||||
|
||||
:param q: the range from the system pose to the landmark
|
||||
:param delta: the difference between a landmark position and the estimated system position
|
||||
:param x: the state, including the estimated system position
|
||||
@@ -337,17 +334,17 @@ the changing uncertainty.
|
||||
sq = math.sqrt(q)
|
||||
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
|
||||
[delta[1, 0], - delta[0, 0], - q, - delta[1, 0], delta[0, 0]]])
|
||||
|
||||
|
||||
G = G / q
|
||||
nLM = calc_n_LM(x)
|
||||
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
|
||||
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
|
||||
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
|
||||
|
||||
|
||||
F = np.vstack((F1, F2))
|
||||
|
||||
|
||||
H = G @ F
|
||||
|
||||
|
||||
return H
|
||||
|
||||
Observation Step
|
||||
@@ -370,17 +367,17 @@ reckoning and control functions are passed along here as well.
|
||||
:param xd: the current noisy estimate of the system
|
||||
:param u: the current control input
|
||||
:param RFID: the true position of the landmarks
|
||||
|
||||
:returns: Computes the true position, observations, dead reckoning (noisy) position,
|
||||
|
||||
:returns: Computes the true position, observations, dead reckoning (noisy) position,
|
||||
and noisy control function
|
||||
"""
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
|
||||
# add noise to gps x-y
|
||||
z = np.zeros((0, 3))
|
||||
|
||||
|
||||
for i in range(len(RFID[:, 0])): # Test all beacons, only add the ones we can see (within MAX_RANGE)
|
||||
|
||||
|
||||
dx = RFID[i, 0] - xTrue[0, 0]
|
||||
dy = RFID[i, 1] - xTrue[1, 0]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
@@ -390,12 +387,12 @@ reckoning and control functions are passed along here as well.
|
||||
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
|
||||
zi = np.array([dn, anglen, i])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
|
||||
# add noise to input
|
||||
ud = np.array([[
|
||||
u[0, 0] + np.random.randn() * Rsim[0, 0],
|
||||
u[1, 0] + np.random.randn() * Rsim[1, 1]]]).T
|
||||
|
||||
|
||||
xd = motion_model(xd, ud)
|
||||
return xTrue, z, xd, ud
|
||||
|
||||
@@ -409,32 +406,30 @@ reckoning and control functions are passed along here as well.
|
||||
"""
|
||||
n = int((len(x) - STATE_SIZE) / LM_SIZE)
|
||||
return n
|
||||
|
||||
|
||||
|
||||
|
||||
def jacob_motion(x, u):
|
||||
"""
|
||||
Calculates the jacobian of motion model.
|
||||
|
||||
Calculates the jacobian of motion model.
|
||||
|
||||
:param x: The state, including the estimated position of the system
|
||||
:param u: The control function
|
||||
:returns: G: Jacobian
|
||||
Fx: STATE_SIZE x (STATE_SIZE + 2 * num_landmarks) matrix where the left side is an identity matrix
|
||||
"""
|
||||
|
||||
|
||||
# [eye(3) [0 x y; 0 x y; 0 x y]]
|
||||
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
|
||||
(STATE_SIZE, LM_SIZE * calc_n_LM(x)))))
|
||||
|
||||
|
||||
jF = np.array([[0.0, 0.0, -DT * u[0] * math.sin(x[2, 0])],
|
||||
[0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],
|
||||
[0.0, 0.0, 0.0]],dtype=object)
|
||||
|
||||
|
||||
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
|
||||
if calc_n_LM(x) > 0:
|
||||
print(Fx.shape)
|
||||
return G, Fx,
|
||||
|
||||
|
||||
|
||||
|
||||
.. code:: ipython3
|
||||
@@ -442,68 +437,68 @@ reckoning and control functions are passed along here as well.
|
||||
def calc_LM_Pos(x, z):
|
||||
"""
|
||||
Calculates the pose in the world coordinate frame of a landmark at the given measurement.
|
||||
|
||||
|
||||
:param x: [x; y; theta]
|
||||
:param z: [range; bearing]
|
||||
:returns: [x; y] for given measurement
|
||||
"""
|
||||
zp = np.zeros((2, 1))
|
||||
|
||||
|
||||
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
|
||||
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
|
||||
#zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])
|
||||
#zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])
|
||||
|
||||
|
||||
return zp
|
||||
|
||||
|
||||
|
||||
|
||||
def get_LM_Pos_from_state(x, ind):
|
||||
"""
|
||||
Returns the position of a given landmark
|
||||
|
||||
|
||||
:param x: The state containing all landmark positions
|
||||
:param ind: landmark id
|
||||
:returns: The position of the landmark
|
||||
"""
|
||||
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
|
||||
|
||||
|
||||
return lm
|
||||
|
||||
|
||||
|
||||
|
||||
def search_correspond_LM_ID(xAug, PAug, zi):
|
||||
"""
|
||||
Landmark association with Mahalanobis distance.
|
||||
|
||||
If this landmark is at least M_DIST_TH units away from all known landmarks,
|
||||
|
||||
If this landmark is at least M_DIST_TH units away from all known landmarks,
|
||||
it is a NEW landmark.
|
||||
|
||||
|
||||
:param xAug: The estimated state
|
||||
:param PAug: The estimated covariance
|
||||
:param zi: the read measurements of specific landmark
|
||||
:returns: landmark id
|
||||
"""
|
||||
|
||||
|
||||
nLM = calc_n_LM(xAug)
|
||||
|
||||
|
||||
mdist = []
|
||||
|
||||
|
||||
for i in range(nLM):
|
||||
lm = get_LM_Pos_from_state(xAug, i)
|
||||
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
|
||||
mdist.append(y.T @ np.linalg.inv(S) @ y)
|
||||
|
||||
|
||||
mdist.append(M_DIST_TH) # new landmark
|
||||
|
||||
|
||||
minid = mdist.index(min(mdist))
|
||||
|
||||
|
||||
return minid
|
||||
|
||||
|
||||
def calc_input():
|
||||
v = 1.0 # [m/s]
|
||||
yawrate = 0.1 # [rad/s]
|
||||
u = np.array([[v, yawrate]]).T
|
||||
return u
|
||||
|
||||
|
||||
def pi_2_pi(angle):
|
||||
return (angle + math.pi) % (2 * math.pi) - math.pi
|
||||
|
||||
@@ -511,53 +506,53 @@ reckoning and control functions are passed along here as well.
|
||||
|
||||
def main():
|
||||
print(" start!!")
|
||||
|
||||
|
||||
time = 0.0
|
||||
|
||||
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, -2.0],
|
||||
[15.0, 10.0],
|
||||
[3.0, 15.0],
|
||||
[-5.0, 20.0]])
|
||||
|
||||
|
||||
# State Vector [x y yaw v]'
|
||||
xEst = np.zeros((STATE_SIZE, 1))
|
||||
xTrue = np.zeros((STATE_SIZE, 1))
|
||||
PEst = np.eye(STATE_SIZE)
|
||||
|
||||
|
||||
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
|
||||
|
||||
|
||||
# history
|
||||
hxEst = xEst
|
||||
hxTrue = xTrue
|
||||
hxDR = xTrue
|
||||
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
u = calc_input()
|
||||
|
||||
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
|
||||
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
|
||||
|
||||
|
||||
x_state = xEst[0:STATE_SIZE]
|
||||
|
||||
|
||||
# store data history
|
||||
hxEst = np.hstack((hxEst, x_state))
|
||||
hxDR = np.hstack((hxDR, xDR))
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.cla()
|
||||
|
||||
|
||||
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
||||
plt.plot(xEst[0], xEst[1], ".r")
|
||||
|
||||
|
||||
# plot landmark
|
||||
for i in range(calc_n_LM(xEst)):
|
||||
plt.plot(xEst[STATE_SIZE + i * 2],
|
||||
xEst[STATE_SIZE + i * 2 + 1], "xg")
|
||||
|
||||
|
||||
plt.plot(hxTrue[0, :],
|
||||
hxTrue[1, :], "-b")
|
||||
plt.plot(hxDR[0, :],
|
||||
@@ -587,5 +582,3 @@ References:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- `PROBABILISTIC ROBOTICS <http://www.probabilistic-robotics.org/>`_
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user