fix rrt star reeds shepp rewire and test

This commit is contained in:
Atsushi Sakai
2019-07-27 15:56:16 +09:00
parent 67540275a6
commit 0937486803
5 changed files with 168 additions and 234 deletions

View File

@@ -1,5 +1,5 @@
"""
Path planning Sample Code with RRT for car like robot.
Path planning Sample Code with RRT with Dubins path
author: AtsushiSakai(@Atsushi_twi)

View File

@@ -100,7 +100,7 @@ class RRTStar(RRT):
for i in near_inds:
near_node = self.node_list[i]
t_node = self.steer(near_node, new_node)
if self.check_collision(t_node, self.obstacle_list):
if t_node and self.check_collision(t_node, self.obstacle_list):
costs.append(self.calc_new_cost(near_node, new_node))
else:
costs.append(float("inf")) # the cost of collision node
@@ -143,6 +143,8 @@ class RRTStar(RRT):
for i in near_inds:
near_node = self.node_list[i]
edge_node = self.steer(new_node, near_node)
if not edge_node:
continue
edge_node.cost = self.calc_new_cost(new_node, near_node)
no_collision = self.check_collision(edge_node, self.obstacle_list)

View File

@@ -1,289 +1,219 @@
"""
Path Planning Sample Code with RRT for car like robot.
Path planning Sample Code with RRT with Reeds-Shepp path
author: AtsushiSakai(@Atsushi_twi)
"""
import matplotlib.pyplot as plt
import numpy as np
import copy
import math
import os
import random
import sys
import os
import matplotlib.pyplot as plt
import numpy as np
sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
"/../ReedsSheppPath/")
sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
"/../RRTStar/")
try:
import reeds_shepp_path_planning
except:
from rrt_star import RRTStar
except ImportError:
raise
show_animation = True
STEP_SIZE = 0.1
curvature = 1.0
class RRT():
class RRTStarReedsShepp(RRTStar):
"""
Class for RRT Planning
Class for RRT star planning with Reeds Shepp path
"""
def __init__(self, start, goal, obstacleList, randArea,
goalSampleRate=10, maxIter=400):
class Node(RRTStar.Node):
"""
RRT Node
"""
def __init__(self, x, y, yaw):
super().__init__(x, y)
self.yaw = yaw
self.path_yaw = []
def __init__(self, start, goal, obstacle_list, rand_area,
goal_sample_rate=10,
max_iter=200,
connect_circle_dist=50.0
):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
randArea:Random Sampling Area [min,max]
"""
self.start = Node(start[0], start[1], start[2])
self.end = Node(goal[0], goal[1], goal[2])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
self.obstacleList = obstacleList
self.start = self.Node(start[0], start[1], start[2])
self.end = self.Node(goal[0], goal[1], goal[2])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.connect_circle_dist = connect_circle_dist
def Planning(self, animation=True):
self.curvature = 1.0
self.goal_yaw_th = np.deg2rad(1.0)
self.goal_xy_th = 0.5
def planning(self, animation=True, search_until_max_iter=True):
"""
Pathplanning
RRT Star planning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
for i in range(self.maxIter):
rnd = self.get_random_point()
nind = self.GetNearestListIndex(self.nodeList, rnd)
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_list_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd)
newNode = self.steer(rnd, nind)
if newNode is None:
continue
if self.CollisionCheck(newNode, self.obstacleList):
nearinds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearinds)
if newNode is None:
continue
self.nodeList.append(newNode)
self.rewire(newNode, nearinds)
if self.check_collision(new_node, self.obstacle_list):
near_indexes = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_indexes)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_indexes)
if animation and i % 5 == 0:
self.DrawGraph(rnd=rnd)
self.plot_start_goal_arrow()
self.draw_graph(rnd)
# generate coruse
lastIndex = self.get_best_last_index()
if lastIndex is None:
return None
path = self.gen_final_course(lastIndex)
return path
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
def choose_parent(self, newNode, nearinds):
if not nearinds:
return newNode
print("reached max iteration")
dlist = []
for i in nearinds:
tNode = self.steer(newNode, i)
if tNode is None:
continue
if self.CollisionCheck(tNode, self.obstacleList):
dlist.append(tNode.cost)
else:
dlist.append(float("inf"))
mincost = min(dlist)
minind = nearinds[dlist.index(mincost)]
if mincost == float("inf"):
print("mincost is inf")
return newNode
newNode = self.steer(newNode, minind)
return newNode
def pi_2_pi(self, angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
def steer(self, rnd, nind):
nearestNode = self.nodeList[nind]
px, py, pyaw, mode, clen = reeds_shepp_path_planning.reeds_shepp_path_planning(
nearestNode.x, nearestNode.y, nearestNode.yaw, rnd.x, rnd.y, rnd.yaw, curvature, STEP_SIZE)
if px is None:
return None
newNode = copy.deepcopy(nearestNode)
newNode.x = px[-1]
newNode.y = py[-1]
newNode.yaw = pyaw[-1]
newNode.path_x = px
newNode.path_y = py
newNode.path_yaw = pyaw
newNode.cost += sum([abs(c) for c in clen])
newNode.parent = nind
return newNode
def get_random_point(self):
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand),
random.uniform(self.minrand, self.maxrand),
random.uniform(-math.pi, math.pi)
]
else: # goal point sampling
rnd = [self.end.x, self.end.y, self.end.yaw]
node = Node(rnd[0], rnd[1], rnd[2])
return node
def get_best_last_index(self):
# print("get_best_last_index")
YAWTH = np.deg2rad(3.0)
XYTH = 0.5
goalinds = []
for (i, node) in enumerate(self.nodeList):
if self.calc_dist_to_goal(node.x, node.y) <= XYTH:
goalinds.append(i)
# print("OK XY TH num is")
# print(len(goalinds))
# angle check
fgoalinds = []
for i in goalinds:
if abs(self.nodeList[i].yaw - self.end.yaw) <= YAWTH:
fgoalinds.append(i)
# print("OK YAW TH num is")
# print(len(fgoalinds))
if not fgoalinds:
return None
mincost = min([self.nodeList[i].cost for i in fgoalinds])
for i in fgoalinds:
if self.nodeList[i].cost == mincost:
return i
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
else:
print("Cannot find path")
return None
def gen_final_course(self, goalind):
path = [[self.end.x, self.end.y]]
while self.nodeList[goalind].parent is not None:
node = self.nodeList[goalind]
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
goalind = node.parent
path.append([self.start.x, self.start.y])
return path
def calc_dist_to_goal(self, x, y):
return np.linalg.norm([x - self.end.x, y - self.end.y])
def find_near_nodes(self, newNode):
nnode = len(self.nodeList)
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
# r = self.expandDis * 5.0
dlist = [(node.x - newNode.x) ** 2 +
(node.y - newNode.y) ** 2 +
(node.yaw - newNode.yaw) ** 2
for node in self.nodeList]
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
return nearinds
def rewire(self, newNode, nearinds):
nnode = len(self.nodeList)
for i in nearinds:
nearNode = self.nodeList[i]
tNode = self.steer(nearNode, nnode - 1)
if tNode is None:
continue
obstacleOK = self.CollisionCheck(tNode, self.obstacleList)
imporveCost = nearNode.cost > tNode.cost
if obstacleOK and imporveCost:
# print("rewire")
self.nodeList[i] = tNode
def DrawGraph(self, rnd=None): # pragma: no cover
def draw_graph(self, rnd=None):
plt.clf()
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.nodeList:
if node.parent is not None:
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
# plt.plot([node.x, self.nodeList[node.parent].x], [
# node.y, self.nodeList[node.parent].y], "-g")
for (ox, oy, size) in self.obstacleList:
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
self.plot_start_goal_arrow()
plt.pause(0.01)
def plot_start_goal_arrow(self):
reeds_shepp_path_planning.plot_arrow(
self.start.x, self.start.y, self.start.yaw)
reeds_shepp_path_planning.plot_arrow(
self.end.x, self.end.y, self.end.yaw)
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def steer(self, from_node, to_node):
# plt.show()
# input()
px, py, pyaw, mode, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
def GetNearestListIndex(self, nodeList, rnd):
dlist = [(node.x - rnd.x) ** 2 +
(node.y - rnd.y) ** 2 +
(node.yaw - rnd.yaw) ** 2 for node in nodeList]
minind = dlist.index(min(dlist))
if not px:
return None
return minind
new_node = copy.deepcopy(from_node)
new_node.x = px[-1]
new_node.y = py[-1]
new_node.yaw = pyaw[-1]
def CollisionCheck(self, node, obstacleList):
new_node.path_x = px
new_node.path_y = py
new_node.path_yaw = pyaw
new_node.cost += sum(course_lengths)
new_node.parent = from_node
for (ox, oy, size) in obstacleList:
for (ix, iy) in zip(node.path_x, node.path_y):
dx = ox - ix
dy = oy - iy
d = dx * dx + dy * dy
if d <= size ** 2:
return False # collision
return new_node
return True # safe
def calc_new_cost(self, from_node, to_node):
_, _, _, _, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if not course_lengths:
return float("inf")
return from_node.cost + sum(course_lengths)
def get_random_node(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand),
random.uniform(-math.pi, math.pi)
)
else: # goal point sampling
rnd = self.Node(self.end.x, self.end.y, self.end.yaw)
return rnd
def search_best_goal_node(self):
goal_indexes = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th:
goal_indexes.append(i)
# angle check
final_goal_indexes = []
for i in goal_indexes:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th:
final_goal_indexes.append(i)
if not final_goal_indexes:
return None
min_cost = min([self.node_list[i].cost for i in final_goal_indexes])
for i in final_goal_indexes:
if self.node_list[i].cost == min_cost:
return i
return None
def generate_final_course(self, goal_index):
print("final")
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_index]
while node.parent:
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
node = node.parent
path.append([self.start.x, self.start.y])
return path
class Node():
"""
RRT Node
"""
def __init__(self, x, y, yaw):
self.x = x
self.y = y
self.yaw = yaw
self.path_x = []
self.path_y = []
self.path_yaw = []
self.cost = 0.0
self.parent = None
def main(maxIter=200):
def main():
print("Start " + __file__)
# ====Search Path with RRT====
@@ -303,14 +233,14 @@ def main(maxIter=200):
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [6.0, 7.0, np.deg2rad(90.0)]
rrt = RRT(start, goal, randArea=[-2.0, 15.0],
obstacleList=obstacleList,
maxIter=maxIter)
path = rrt.Planning(animation=show_animation)
rrt_star_reeds_shepp = RRTStarReedsShepp(start, goal,
obstacleList,
[-2.0, 15.0])
path = rrt_star_reeds_shepp.planning(animation=show_animation)
# Draw final path
if show_animation: # pragma: no cover
rrt.DrawGraph()
if path and show_animation: # pragma: no cover
rrt_star_reeds_shepp.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.001)

View File

@@ -5,10 +5,10 @@ Reeds Shepp path planner sample code
author Atsushi Sakai(@Atsushi_twi)
"""
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
show_animation = True
@@ -353,7 +353,7 @@ def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
def reeds_shepp_path_planning(sx, sy, syaw,
gx, gy, gyaw, maxc, step_size):
gx, gy, gyaw, maxc, step_size=0.2):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)

View File

@@ -1,7 +1,9 @@
from unittest import TestCase
from PathPlanning.DubinsPath import dubins_path_planning
import numpy as np
from PathPlanning.DubinsPath import dubins_path_planning
class Test(TestCase):
@@ -19,8 +21,8 @@ class Test(TestCase):
px, py, pyaw, mode, clen = dubins_path_planning.dubins_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
assert(abs(px[-1] - end_x) <= 0.1)
assert(abs(py[-1] - end_y) <= 0.1)
assert (abs(px[-1] - end_x) <= 0.5)
assert (abs(py[-1] - end_y) <= 0.5)
assert(abs(pyaw[-1] - end_yaw) <= 0.1)
def test2(self):