mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-10 21:28:00 -05:00
Dynamic Movement Primitives Implementation (#526)
* Without equals sign, sometimes get points that are in the wrong direction - relative to the points before and after it- when change in x or change in y along path is 0 * Created test script for dubins path generator * Made len == 0 it's own case, also changed 'l' to 'len' to appease travisCI * More variable renaming to appease CI * Broke == 0 into its own case in dubins planner, also Renaming files to appease CI * Reverting some naming changes * Turns out theres already a test for dubins.. not sure how I missed that * Note to self: run the test cases on your own before throwing them at CI * Added handling of length=0 case in generate_local_course() * Missed reverting 'mode' back to 'm' in one spot * Addressing style issues (line length) * Mostly works, now just need to setup linear regression to solve for weights * Re-arranged class * Wrote DMP program and added tests file * Styling fixes * More styling * Missed one indent * Multi-dimension path learning (e.g. in x and y instead of just x) * Added potential field obstacle avoidance * Potential field working much better but has issues with reaching goal state * Path ending to short not a result of obstacles, should be fix-able * Mostly working! end won't go to goal * split DMP and path following * pretty close * Okay this is working pretty well * looks.. okay. was using the wrong vector before * a plan to fix this mess * Okay seriously going to pivot to the dubins approach im done with potential field lol * Finished obstacle circle handling (and merging circles that are closer than their radii) * Finished circle event finder function * Some progress in preparing for dubins curves * Finished angle finding algo, need to test * Okay getting back to this, going to ignore the navigation and just focus on path generation since that's what DMP is for * Moved DMP files to path planning * changed folder name * Made demo path cooler * All working and added visualization tools (will remove * Fixed unit test and handled TODOs * not gonna handle this one * demo now scales with data * CI errors * CI errors * Fixing code style issues * more styling * fixing CI errors * formatting * Removed dead code * removed unused imports * removed uneccesary initialization * Applying PR feedback * fixing CI errors * added description to header and removed unused variable
This commit is contained in:
committed by
GitHub
parent
4d3fb2825c
commit
0df55e943e
@@ -0,0 +1,261 @@
|
||||
"""
|
||||
Author: Jonathan Schwartz (github.com/SchwartzCode)
|
||||
|
||||
This code provides a simple implementation of Dynamic Movement
|
||||
Primitives, which is an approach to learning curves by modelling
|
||||
them as a weighted sum of gaussian distributions. This approach
|
||||
can be used to dampen noise in a curve, and can also be used to
|
||||
stretch a curve by adjusting its start and end points.
|
||||
|
||||
More information on Dynamic Movement Primitives available at:
|
||||
https://arxiv.org/abs/2102.03861
|
||||
https://www.frontiersin.org/articles/10.3389/fncom.2013.00138/full
|
||||
|
||||
"""
|
||||
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DMP(object):
|
||||
|
||||
def __init__(self, training_data, data_period, K=156.25, B=25):
|
||||
"""
|
||||
Arguments:
|
||||
training_data - input data of form [N, dim]
|
||||
data_period - amount of time training data covers
|
||||
K and B - spring and damper constants to define
|
||||
DMP behavior
|
||||
"""
|
||||
|
||||
self.K = K # virtual spring constant
|
||||
self.B = B # virtual damper coefficient
|
||||
|
||||
self.timesteps = training_data.shape[0]
|
||||
self.dt = data_period / self.timesteps
|
||||
|
||||
self.weights = None # weights used to generate DMP trajectories
|
||||
|
||||
self.T_orig = data_period
|
||||
|
||||
self.training_data = training_data
|
||||
self.find_basis_functions_weights(training_data, data_period)
|
||||
|
||||
def find_basis_functions_weights(self, training_data, data_period,
|
||||
num_weights=10):
|
||||
"""
|
||||
Arguments:
|
||||
data [(steps x spacial dim) np array] - data to replicate with DMP
|
||||
data_period [float] - time duration of data
|
||||
"""
|
||||
|
||||
if not isinstance(training_data, np.ndarray):
|
||||
print("Warning: you should input training data as an np.ndarray")
|
||||
elif training_data.shape[0] < training_data.shape[1]:
|
||||
print("Warning: you probably need to transpose your training data")
|
||||
|
||||
dt = data_period / len(training_data)
|
||||
|
||||
init_state = training_data[0]
|
||||
goal_state = training_data[-1]
|
||||
|
||||
# means (C) and std devs (H) of gaussian basis functions
|
||||
C = np.linspace(0, 1, num_weights)
|
||||
H = (0.65*(1./(num_weights-1))**2)
|
||||
|
||||
for dim, _ in enumerate(training_data[0]):
|
||||
|
||||
dimension_data = training_data[:, dim]
|
||||
|
||||
q0 = init_state[dim]
|
||||
g = goal_state[dim]
|
||||
|
||||
q = q0
|
||||
qd_last = 0
|
||||
|
||||
phi_vals = []
|
||||
f_vals = []
|
||||
|
||||
for i, _ in enumerate(dimension_data):
|
||||
if i + 1 == len(dimension_data):
|
||||
qd = 0
|
||||
else:
|
||||
qd = (dimension_data[i+1] - dimension_data[i]) / dt
|
||||
|
||||
phi = [np.exp(-0.5 * ((i * dt / data_period) - c)**2 / H)
|
||||
for c in C]
|
||||
phi = phi/np.sum(phi)
|
||||
|
||||
qdd = (qd - qd_last)/dt
|
||||
|
||||
f = (qdd * data_period**2 - self.K * (g - q) + self.B * qd
|
||||
* data_period) / (g - q0)
|
||||
|
||||
phi_vals.append(phi)
|
||||
f_vals.append(f)
|
||||
|
||||
qd_last = qd
|
||||
q += qd * dt
|
||||
|
||||
phi_vals = np.asarray(phi_vals)
|
||||
f_vals = np.asarray(f_vals)
|
||||
|
||||
w = np.linalg.lstsq(phi_vals, f_vals, rcond=None)
|
||||
|
||||
if self.weights is None:
|
||||
self.weights = np.asarray(w[0])
|
||||
else:
|
||||
self.weights = np.vstack([self.weights, w[0]])
|
||||
|
||||
def recreate_trajectory(self, init_state, goal_state, T):
|
||||
"""
|
||||
init_state - initial state/position
|
||||
goal_state - goal state/position
|
||||
T - amount of time to travel q0 -> g
|
||||
"""
|
||||
|
||||
nrBasis = len(self.weights[0]) # number of gaussian basis functions
|
||||
|
||||
# means (C) and std devs (H) of gaussian basis functions
|
||||
C = np.linspace(0, 1, nrBasis)
|
||||
H = (0.65*(1./(nrBasis-1))**2)
|
||||
|
||||
# initialize virtual system
|
||||
time = 0
|
||||
|
||||
q = init_state
|
||||
dimensions = self.weights.shape[0]
|
||||
qd = np.zeros(dimensions)
|
||||
|
||||
positions = np.array([])
|
||||
for k in range(self.timesteps):
|
||||
time = time + self.dt
|
||||
|
||||
qdd = np.zeros(dimensions)
|
||||
|
||||
for dim in range(dimensions):
|
||||
|
||||
if time <= T:
|
||||
phi = [np.exp(-0.5 * ((time / T) - c)**2 / H) for c in C]
|
||||
phi = phi / np.sum(phi)
|
||||
f = np.dot(phi, self.weights[dim])
|
||||
else:
|
||||
f = 0
|
||||
|
||||
# simulate dynamics
|
||||
qdd[dim] = (self.K*(goal_state[dim] - q[dim])/T**2
|
||||
- self.B*qd[dim]/T
|
||||
+ (goal_state[dim] - init_state[dim])*f/T**2)
|
||||
|
||||
qd = qd + qdd * self.dt
|
||||
q = q + qd * self.dt
|
||||
|
||||
if positions.size == 0:
|
||||
positions = q
|
||||
else:
|
||||
positions = np.vstack([positions, q])
|
||||
|
||||
t = np.arange(0, self.timesteps * self.dt, self.dt)
|
||||
return t, positions
|
||||
|
||||
@staticmethod
|
||||
def dist_between(p1, p2):
|
||||
return np.linalg.norm(p1 - p2)
|
||||
|
||||
def view_trajectory(self, path, title=None, demo=False):
|
||||
|
||||
path = np.asarray(path)
|
||||
|
||||
plt.cla()
|
||||
plt.plot(self.training_data[:, 0], self.training_data[:, 1],
|
||||
label="Training Data")
|
||||
plt.plot(path[:, 0], path[:, 1],
|
||||
linewidth=2, label="DMP Approximation")
|
||||
|
||||
plt.xlabel("X Position")
|
||||
plt.ylabel("Y Position")
|
||||
plt.legend()
|
||||
|
||||
if title is not None:
|
||||
plt.title(title)
|
||||
|
||||
if demo:
|
||||
plt.xlim([-0.5, 5])
|
||||
plt.ylim([-2, 2])
|
||||
plt.draw()
|
||||
plt.pause(0.02)
|
||||
else:
|
||||
plt.show()
|
||||
|
||||
def show_DMP_purpose(self):
|
||||
"""
|
||||
This function conveys the purpose of DMPs:
|
||||
to capture a trajectory and be able to stretch
|
||||
and squeeze it in terms of start and stop position
|
||||
or time
|
||||
"""
|
||||
|
||||
q0_orig = self.training_data[0]
|
||||
g_orig = self.training_data[-1]
|
||||
T_orig = self.T_orig
|
||||
|
||||
data_range = (np.amax(self.training_data[:, 0])
|
||||
- np.amin(self.training_data[:, 0])) / 4
|
||||
|
||||
q0_right = q0_orig + np.array([data_range, 0])
|
||||
q0_up = q0_orig + np.array([0, data_range/2])
|
||||
g_left = g_orig - np.array([data_range, 0])
|
||||
g_down = g_orig - np.array([0, data_range/2])
|
||||
|
||||
q0_vals = np.vstack([np.linspace(q0_orig, q0_right, 20),
|
||||
np.linspace(q0_orig, q0_up, 20)])
|
||||
g_vals = np.vstack([np.linspace(g_orig, g_left, 20),
|
||||
np.linspace(g_orig, g_down, 20)])
|
||||
T_vals = np.linspace(T_orig, 2*T_orig, 20)
|
||||
|
||||
for new_q0_value in q0_vals:
|
||||
plot_title = "Initial Position = [%s, %s]" % \
|
||||
(round(new_q0_value[0], 2), round(new_q0_value[1], 2))
|
||||
|
||||
_, path = self.recreate_trajectory(new_q0_value, g_orig, T_orig)
|
||||
self.view_trajectory(path, title=plot_title, demo=True)
|
||||
|
||||
for new_g_value in g_vals:
|
||||
plot_title = "Goal Position = [%s, %s]" % \
|
||||
(round(new_g_value[0], 2), round(new_g_value[1], 2))
|
||||
|
||||
_, path = self.recreate_trajectory(q0_orig, new_g_value, T_orig)
|
||||
self.view_trajectory(path, title=plot_title, demo=True)
|
||||
|
||||
for new_T_value in T_vals:
|
||||
plot_title = "Period = %s [sec]" % round(new_T_value, 2)
|
||||
|
||||
_, path = self.recreate_trajectory(q0_orig, g_orig, new_T_value)
|
||||
self.view_trajectory(path, title=plot_title, demo=True)
|
||||
|
||||
|
||||
def example_DMP():
|
||||
"""
|
||||
Creates a noisy trajectory, fits weights to it, and then adjusts the
|
||||
trajectory by moving its start position, goal position, or period
|
||||
"""
|
||||
t = np.arange(0, 3*np.pi/2, 0.01)
|
||||
t1 = np.arange(3*np.pi/2, 2*np.pi, 0.01)[:-1]
|
||||
t2 = np.arange(0, np.pi/2, 0.01)[:-1]
|
||||
t3 = np.arange(np.pi, 3*np.pi/2, 0.01)
|
||||
data_x = t + 0.02*np.random.rand(t.shape[0])
|
||||
data_y = np.concatenate([np.cos(t1) + 0.1*np.random.rand(t1.shape[0]),
|
||||
np.cos(t2) + 0.1*np.random.rand(t2.shape[0]),
|
||||
np.sin(t3) + 0.1*np.random.rand(t3.shape[0])])
|
||||
training_data = np.vstack([data_x, data_y]).T
|
||||
|
||||
period = 3*np.pi/2
|
||||
DMP_controller = DMP(training_data, period)
|
||||
|
||||
DMP_controller.show_DMP_purpose()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
example_DMP()
|
||||
49
tests/test_dynamic_movement_primitives.py
Normal file
49
tests/test_dynamic_movement_primitives.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import conftest
|
||||
import numpy as np
|
||||
from PathPlanning.DynamicMovementPrimitives import \
|
||||
dynamic_movement_primitives
|
||||
|
||||
|
||||
def test_1():
|
||||
# test that trajectory can be learned from user-passed data
|
||||
T = 5
|
||||
t = np.arange(0, T, 0.01)
|
||||
sin_t = np.sin(t)
|
||||
train_data = np.array([t, sin_t]).T
|
||||
|
||||
DMP_controller = dynamic_movement_primitives.DMP(train_data, T)
|
||||
DMP_controller.recreate_trajectory(train_data[0], train_data[-1], 4)
|
||||
|
||||
|
||||
def test_2():
|
||||
# test that length of trajectory is equal to desired number of timesteps
|
||||
T = 5
|
||||
t = np.arange(0, T, 0.01)
|
||||
sin_t = np.sin(t)
|
||||
train_data = np.array([t, sin_t]).T
|
||||
|
||||
DMP_controller = dynamic_movement_primitives.DMP(train_data, T)
|
||||
t, path = DMP_controller.recreate_trajectory(train_data[0],
|
||||
train_data[-1], 4)
|
||||
|
||||
assert(path.shape[0] == DMP_controller.timesteps)
|
||||
|
||||
|
||||
def test_3():
|
||||
# check that learned trajectory is close to initial
|
||||
T = 3*np.pi/2
|
||||
A_noise = 0.02
|
||||
t = np.arange(0, T, 0.01)
|
||||
noisy_sin_t = np.sin(t) + A_noise*np.random.rand(len(t))
|
||||
train_data = np.array([t, noisy_sin_t]).T
|
||||
|
||||
DMP_controller = dynamic_movement_primitives.DMP(train_data, T)
|
||||
t, pos = DMP_controller.recreate_trajectory(train_data[0],
|
||||
train_data[-1], T)
|
||||
|
||||
diff = abs(pos[:, 1] - noisy_sin_t)
|
||||
assert(max(diff) < 5*A_noise)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
conftest.run_this_test(__file__)
|
||||
Reference in New Issue
Block a user