Fix: dead link URL in doc (#1087)

* fix dead url links

* change link to MPC course

* remove dead link
This commit is contained in:
parmaski
2025-01-24 13:28:12 +09:00
committed by GitHub
parent 95eedba447
commit 2a489b3b82
35 changed files with 55 additions and 62 deletions

2
.github/FUNDING.yml vendored
View File

@@ -1,4 +1,4 @@
# These are supported funding model platforms
github: AtsushiSakai
patreon: myenigma
custom: https://www.paypal.me/myenigmapay/
custom: https://www.paypal.com/paypalme/myenigmapay/

View File

@@ -34,7 +34,7 @@ def detect_collision(line_seg, circle):
"""
Determines whether a line segment (arm link) is in contact
with a circle (obstacle).
Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html
Credit to: https://web.archive.org/web/20200130224918/http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html
Args:
line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]]
circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered

View File

@@ -66,7 +66,7 @@ def detect_collision(line_seg, circle):
"""
Determines whether a line segment (arm link) is in contact
with a circle (obstacle).
Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html
Credit to: https://web.archive.org/web/20200130224918/http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html
Args:
line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]]
circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered

View File

@@ -1,7 +1,7 @@
"""
Bug Planning
author: Sarim Mehdi(muhammadsarim.mehdi@studio.unibo.it)
Source: https://sites.google.com/site/ece452bugalgorithms/
Source: https://web.archive.org/web/20201103052224/https://sites.google.com/site/ece452bugalgorithms/
"""
import numpy as np

View File

@@ -9,7 +9,7 @@ stretch a curve by adjusting its start and end points.
More information on Dynamic Movement Primitives available at:
https://arxiv.org/abs/2102.03861
https://www.frontiersin.org/articles/10.3389/fncom.2013.00138/full
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2013.00138/full
"""

View File

@@ -6,7 +6,7 @@ author: Joe Dinius, Ph.D (https://jwdinius.github.io)
Atsushi Sakai (@Atsushi_twi)
Refs:
- https://jwdinius.github.io/blog/2018/eta3traj
- https://jwdinius.github.io/blog/2018/eta3traj/
- [eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots]
(https://ieeexplore.ieee.org/document/4339545/)

View File

@@ -6,7 +6,7 @@ author: Karan Chawla
Reference: Informed RRT*: Optimal Sampling-based Path planning Focused via
Direct Sampling of an Admissible Ellipsoidal Heuristic
https://arxiv.org/pdf/1404.2334.pdf
https://arxiv.org/pdf/1404.2334
"""
import sys

View File

@@ -6,7 +6,7 @@ author: Atsushi Sakai (@Atsushi_twi)
Ref:
- [Local Path planning And Motion Control For Agv In Positioning](http://ieeexplore.ieee.org/document/637936/)
- [Local Path planning And Motion Control For Agv In Positioning](https://ieeexplore.ieee.org/document/637936/)
"""

View File

@@ -13,7 +13,7 @@
PYTHON versions by Corrado Chisari
Original code is available at
http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html
https://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html
Note: the i4 prefix means that the function takes a numeric argument or
returns a number which is interpreted inside the function as a 4

View File

@@ -12,8 +12,8 @@ Ref:
- State Space Sampling of Feasible Motions for High-Performance Mobile Robot
Navigation in Complex Environments
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.8210&rep=rep1
&type=pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf
&doi=e2256b5b24137f89e473f01df288cb3aa72e56a0
"""
import sys

View File

@@ -4,7 +4,7 @@ Distance/Path Transform Wavefront Coverage Path Planner
author: Todd Tang
paper: Planning paths of complete coverage of an unstructured environment
by a mobile robot - Zelinsky et.al.
link: http://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf
link: https://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf
"""
import os

View File

@@ -6,7 +6,7 @@ author Atsushi Sakai (@Atsushi_twi)
Ref:
Shunichi09/nonlinear_control: Implementing the nonlinear model predictive
control, sliding mode control https://github.com/Shunichi09/nonlinear_control
control, sliding mode control https://github.com/Shunichi09/PythonLinearNonlinearControl
"""

View File

@@ -5,7 +5,6 @@
![GitHub_Action_MacOS_CI](https://github.com/AtsushiSakai/PythonRobotics/workflows/MacOS_CI/badge.svg)
![GitHub_Action_Windows_CI](https://github.com/AtsushiSakai/PythonRobotics/workflows/Windows_CI/badge.svg)
[![Build status](https://ci.appveyor.com/api/projects/status/sb279kxuv1be391g?svg=true)](https://ci.appveyor.com/project/AtsushiSakai/pythonrobotics)
[![codecov](https://codecov.io/gh/AtsushiSakai/PythonRobotics/branch/master/graph/badge.svg)](https://codecov.io/gh/AtsushiSakai/PythonRobotics)
Python codes for robotics algorithm.
@@ -111,7 +110,7 @@ For development:
- [pytest-xdist](https://pypi.org/project/pytest-xdist/) (for parallel unit tests)
- [mypy](http://mypy-lang.org/) (for type check)
- [mypy](https://mypy-lang.org/) (for type check)
- [sphinx](https://www.sphinx-doc.org/) (for document generation)
@@ -328,7 +327,7 @@ The animation shows a robot finding its path and rerouting to avoid obstacles as
Refs:
- [D* Lite](http://idm-lab.org/bib/abstracts/papers/aaai02b.pd)
- [D* Lite](http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf)
- [Improved Fast Replanning for Robot Navigation in Unknown Terrain](http://www.cs.cmu.edu/~maxim/files/dlite_icra02.pdf)
### Potential Field algorithm
@@ -357,9 +356,9 @@ This code uses the model predictive trajectory generator to solve boundary probl
Ref:
- [Optimal rough terrain trajectory generation for wheeled mobile robots](http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328)
- [Optimal rough terrain trajectory generation for wheeled mobile robots](https://journals.sagepub.com/doi/pdf/10.1177/0278364906075328)
- [State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments](http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf)
- [State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments](https://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf)
### Biased polar sampling
@@ -403,7 +402,7 @@ Ref:
- [Incremental Sampling-based Algorithms for Optimal Motion Planning](https://arxiv.org/abs/1005.0416)
- [Sampling-based Algorithms for Optimal Motion Planning](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf)
- [Sampling-based Algorithms for Optimal Motion Planning](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bddbc99f97173430aa49a0ada53ab5bade5902fa)
### RRT\* with reeds-shepp path
@@ -421,7 +420,7 @@ A double integrator motion model is used for LQR local planner.
Ref:
- [LQR\-RRT\*: Optimal Sampling\-Based Motion Planning with Automatically Derived Extension Heuristics](http://lis.csail.mit.edu/pubs/perez-icra12.pdf)
- [LQR\-RRT\*: Optimal Sampling\-Based Motion Planning with Automatically Derived Extension Heuristics](https://lis.csail.mit.edu/pubs/perez-icra12.pdf)
- [MahanFathi/LQR\-RRTstar: LQR\-RRT\* method is used for random motion planning of a simple pendulum in its phase plot](https://github.com/MahanFathi/LQR-RRTstar)
@@ -436,7 +435,7 @@ It can calculate a 2D path, velocity, and acceleration profile based on quintic
Ref:
- [Local Path Planning And Motion Control For Agv In Positioning](http://ieeexplore.ieee.org/document/637936/)
- [Local Path Planning And Motion Control For Agv In Positioning](https://ieeexplore.ieee.org/document/637936/)
## Reeds Shepp planning
@@ -523,7 +522,7 @@ Path tracking simulation with LQR speed and steering control.
Ref:
- [Towards fully autonomous driving: Systems and algorithms \- IEEE Conference Publication](http://ieeexplore.ieee.org/document/5940562/)
- [Towards fully autonomous driving: Systems and algorithms \- IEEE Conference Publication](https://ieeexplore.ieee.org/document/5940562/)
## Model predictive speed and steering control
@@ -630,7 +629,7 @@ If you or your company would like to support this project, please consider:
- [Become a backer or sponsor on Patreon](https://www.patreon.com/myenigma)
- [One-time donation via PayPal](https://www.paypal.me/myenigmapay/)
- [One-time donation via PayPal](https://www.paypal.com/paypalme/myenigmapay/)
If you would like to support us in some other way, please contact with creating an issue.
@@ -640,7 +639,7 @@ If you would like to support us in some other way, please contact with creating
They are providing a free license of their IDEs for this OSS development.
### [1Password](https://github.com/1Password/1password-teams-open-source)
### [1Password](https://github.com/1Password/for-open-source)
They are providing a free license of their 1Password team license for this OSS project.

View File

@@ -3,4 +3,4 @@ Acknowledgments and References
Thanks to Luca Larlone for allowing inclusion of the `Intel dataset <https://lucacarlone.mit.edu/datasets/>`_ in this repo.
1. Carlone, L. and Censi, A., 2014. `From angular manifolds to the integer lattice: Guaranteed orientation estimation with application to pose graph optimization <https://arxiv.org/pdf/1211.3063.pdf>`_. IEEE Transactions on Robotics, 30(2), pp.475-492.
1. Carlone, L. and Censi, A., 2014. `From angular manifolds to the integer lattice: Guaranteed orientation estimation with application to pose graph optimization <https://arxiv.org/pdf/1211.3063>`_. IEEE Transactions on Robotics, 30(2), pp.475-492.

View File

@@ -4,7 +4,7 @@ environment:
global:
# SDK v7.0 MSVC Express 2008's SetEnv.cmd script will fail if the
# /E:ON and /V:ON options are not enabled in the batch script intepreter
# See: http://stackoverflow.com/a/13751649/163740
# See: https://stackoverflow.com/a/13751649/163740
CMD_IN_ENV: "cmd /E:ON /V:ON /C .\\appveyor\\run_with_env.cmd"
matrix:

View File

@@ -3,7 +3,7 @@
#
# This file does only contain a selection of the most common options. For a
# full list see the documentation:
# http://www.sphinx-doc.org/en/master/config
# https://www.sphinx-doc.org/en/master/config
# -- Path setup --------------------------------------------------------------

View File

@@ -49,7 +49,7 @@ For development:
.. _`pytest-xdist`: https://github.com/pytest-dev/pytest-xdist
.. _`mypy`: https://mypy-lang.org/
.. _`sphinx`: https://www.sphinx-doc.org/en/master/index.html
.. _`ruff`: https://github.com/charliermarsh/ruff
.. _`ruff`: https://github.com/astral-sh/ruff
How to use

View File

@@ -159,6 +159,6 @@ Sponsors
.. _`JetBrains`: https://www.jetbrains.com/
.. _`Sponsor @AtsushiSakai on GitHub Sponsors`: https://github.com/sponsors/AtsushiSakai
.. _`Become a backer or sponsor on Patreon`: https://www.patreon.com/myenigma
.. _`One-time donation via PayPal`: https://www.paypal.me/myenigmapay/
.. _`One-time donation via PayPal`: https://www.paypal.com/paypalme/myenigmapay/

View File

@@ -22,7 +22,7 @@ if errorlevel 9009 (
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
echo.https://sphinx-doc.org/
exit /b 1
)

View File

@@ -34,4 +34,4 @@ References:
~~~~~~~~~~~
- `_PROBABILISTIC ROBOTICS: <http://www.probabilistic-robotics.org>`_
- `Improving the particle filter in high dimensions using conjugate artificial process noise <https://arxiv.org/pdf/1801.07000.pdf>`_
- `Improving the particle filter in high dimensions using conjugate artificial process noise <https://arxiv.org/pdf/1801.07000>`_

View File

@@ -7,7 +7,7 @@ This is an object shape recognition using rectangle fitting.
This example code is based on this paper algorithm:
- `Efficient L\-Shape Fitting for Vehicle Detection Using Laser Scanners \- The Robotics Institute Carnegie Mellon University <https://www.ri.cmu.edu/publications/efficient-l-shape-fitting-for-vehicle-detection-using-laser-scanners>`_
- `Efficient L\-Shape Fitting for Vehicle Detection Using Laser Scanners \- The Robotics Institute Carnegie Mellon University <https://www.ri.cmu.edu/publications/efficient-l-shape-fitting-for-vehicle-detection-using-laser-scanners/>`_
The algorithm consists of 2 steps as below.
@@ -66,4 +66,4 @@ API
References
~~~~~~~~~~
- `Efficient L\-Shape Fitting for Vehicle Detection Using Laser Scanners \- The Robotics Institute Carnegie Mellon University <https://www.ri.cmu.edu/publications/efficient-l-shape-fitting-for-vehicle-detection-using-laser-scanners>`_
- `Efficient L\-Shape Fitting for Vehicle Detection Using Laser Scanners \- The Robotics Institute Carnegie Mellon University <https://www.ri.cmu.edu/publications/efficient-l-shape-fitting-for-vehicle-detection-using-laser-scanners/>`_

View File

@@ -17,4 +17,4 @@ Ref:
- `Continuous Curvature Path Generation Based on Bezier Curves for
Autonomous
Vehicles <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf>`__
Vehicles <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b00b657c3e0e828c589132a14825e7119772003d>`

View File

@@ -5,4 +5,4 @@ This is a 2D planning with Bug algorithm.
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/BugPlanner/animation.gif
- `ECE452 Bug Algorithms <https://sites.google.com/site/ece452bugalgorithms/>`_
- `ECE452 Bug Algorithms <https://web.archive.org/web/20201103052224/https://sites.google.com/site/ece452bugalgorithms/>`_

View File

@@ -29,6 +29,6 @@ This is a 2D grid based wavefront coverage path planner simulation:
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/WavefrontCPP/animation2.gif
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/WavefrontCPP/animation3.gif
- `Planning paths of complete coverage of an unstructured environment by a mobile robot <http://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf>`_
- `Planning paths of complete coverage of an unstructured environment by a mobile robot <https://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf>`_

View File

@@ -72,5 +72,5 @@ Reference
~~~~~~~~~~~~~~~~~~~~
- `On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents <https://www.jstor.org/stable/2372560?origin=crossref>`__
- `Dubins path - Wikipedia <https://en.wikipedia.org/wiki/Dubins_path>`__
- `15.3.1 Dubins Curves <http://planning.cs.uiuc.edu/node821.html>`__
- `15.3.1 Dubins Curves <https://lavalle.pl/planning/node821.html>`__
- `A Comprehensive, Step-by-Step Tutorial to Computing Dubins Paths <https://gieseanw.wordpress.com/2012/10/21/a-comprehensive-step-by-step-tutorial-to-computing-dubins-paths/>`__

View File

@@ -19,4 +19,4 @@ Lookup table generation sample
Ref:
- `Optimal rough terrain trajectory generation for wheeled mobile
robots <http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328>`__
robots <https://journals.sagepub.com/doi/pdf/10.1177/0278364906075328>`__

View File

@@ -101,6 +101,6 @@ References:
~~~~~~~~~~~
- `Local Path Planning And Motion Control For Agv In
Positioning <http://ieeexplore.ieee.org/document/637936/>`__
Positioning <https://ieeexplore.ieee.org/document/637936/>`__

View File

@@ -383,7 +383,7 @@ Hence, we have:
Ref:
- `15.3.2 Reeds-Shepp
Curves <http://planning.cs.uiuc.edu/node822.html>`__
Curves <https://lavalle.pl/planning/node822.html>`__
- `optimal paths for a car that goes both forwards and
backwards <https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf>`__

View File

@@ -57,7 +57,7 @@ Ref:
- `Informed RRT\*: Optimal Sampling-based Path Planning Focused via
Direct Sampling of an Admissible Ellipsoidal
Heuristic <https://arxiv.org/pdf/1404.2334.pdf>`__
Heuristic <https://arxiv.org/pdf/1404.2334>`__
.. _batch-informed-rrt*:
@@ -90,10 +90,10 @@ PID is used for speed control.
Ref:
- `Motion Planning in Complex Environments using Closed-loop
Prediction <http://acl.mit.edu/papers/KuwataGNC08.pdf>`__
Prediction <https://acl.mit.edu/papers/KuwataGNC08.pdf>`__
- `Real-time Motion Planning with Applications to Autonomous Urban
Driving <http://acl.mit.edu/papers/KuwataTCST09.pdf>`__
Driving <https://acl.mit.edu/papers/KuwataTCST09.pdf>`__
- `[1601.06326] Sampling-based Algorithms for Optimal Motion Planning
Using Closed-loop Prediction <https://arxiv.org/abs/1601.06326>`__
@@ -113,6 +113,6 @@ Ref:
- `LQR-RRT\*: Optimal Sampling-Based Motion Planning with Automatically
Derived Extension
Heuristics <http://lis.csail.mit.edu/pubs/perez-icra12.pdf>`__
Heuristics <https://lis.csail.mit.edu/pubs/perez-icra12.pdf>`__
- `MahanFathi/LQR-RRTstar: LQR-RRT\* method is used for random motion planning of a simple pendulum in its phase plot <https://github.com/MahanFathi/LQR-RRTstar>`__

View File

@@ -16,6 +16,6 @@ Simulation
Ref
^^^
- `Sampling-based Algorithms for Optimal Motion Planning <https://arxiv.org/pdf/1105.1186.pdf>`__
- `Sampling-based Algorithms for Optimal Motion Planning <https://arxiv.org/pdf/1105.1186>`__
- `Incremental Sampling-based Algorithms for Optimal Motion Planning <https://arxiv.org/abs/1005.0416>`__

View File

@@ -25,9 +25,9 @@ Lane sampling
Ref:
- `Optimal rough terrain trajectory generation for wheeled mobile
robots <http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328>`__
robots <https://journals.sagepub.com/doi/pdf/10.1177/0278364906075328>`__
- `State Space Sampling of Feasible Motions for High-Performance Mobile
Robot Navigation in Complex
Environments <http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf>`__
Environments <https://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf>`__

View File

@@ -60,7 +60,7 @@ Ref
- `Shunichi09/nonlinear_control: Implementing the nonlinear model
predictive control, sliding mode
control <https://github.com/Shunichi09/nonlinear_control>`__
control <https://github.com/Shunichi09/PythonLinearNonlinearControl>`__
- `非線形モデル予測制御におけるCGMRES法をpythonで実装する -
Qiita <https://qiita.com/MENDY/items/4108190a579395053924>`__

View File

@@ -137,4 +137,4 @@ Simulation results
References:
~~~~~~~~~~~
- `Towards fully autonomous driving: Systems and algorithms <http://ieeexplore.ieee.org/document/5940562/>`__
- `Towards fully autonomous driving: Systems and algorithms <https://ieeexplore.ieee.org/document/5940562/>`__

View File

@@ -133,5 +133,5 @@ Reference
- `Vehicle Dynamics and Control \| Rajesh Rajamani \|
Springer <http://www.springer.com/us/book/9781461414322>`__
- `MPC Course Material - MPC Lab @
UC-Berkeley <http://www.mpc.berkeley.edu/mpc-course-material>`__
- `MPC Book - MPC Lab @
UC-Berkeley <https://sites.google.com/berkeley.edu/mpc-lab/mpc-course-material>`__

View File

@@ -17,13 +17,7 @@ Ref:
# Educational users
This is a list of users who are using PythonRobotics for education.
If you found other users, please make an issue to let me know.
- [CSCI/ARTI 4530/6530: Introduction to Robotics (Fall 2018), University of Georgia ](http://cobweb.cs.uga.edu/~ramviyas/csci_x530.html)
- [CIT Modules & Programmes \- COMP9073 \- Automation with Python](https://courses.cit.ie/index.cfm/page/module/moduleId/14416)
If you found users who are using PythonRobotics for education, please make an issue to let me know.
# Stargazers location map
@@ -386,14 +380,14 @@ Dear Atsushi Sakai, <br>Thank you so much for creating PythonRobotics and docume
1. B. Blaga, M. Deac, R. W. Y. Al-doori, M. Negru and R. Dǎnescu, "Miniature Autonomous Vehicle Development on Raspberry Pi," 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 2018, pp. 229-236.
doi: 10.1109/ICCP.2018.8516589
keywords: {Automobiles;Task analysis;Autonomous vehicles;Path planning;Global Positioning System;Cameras;miniature autonomous vehicle;path planning;navigation;parking assist;lane detection and tracking;traffic sign recognition},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8516589&isnumber=8516425
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8516589&isnumber=8516425
2. Peggy (Yuchun) Wang and Caitlin Hogan, "Path Planning with Dynamic Obstacle Avoidance for a Jumping-Enabled Robot", AA228/CS238 class report, Department of Computer Science, Stanford University, URL: https://web.stanford.edu/class/aa228/reports/2018/final113.pdf
3. Welburn, E, Hakim Khalili, H, Gupta, A, Watson, S & Carrasco, J 2019, A Navigational System for Quadcopter Remote Inspection of Offshore Substations. in The Fifteenth International Conference on Autonomic and Autonomous Systems 2019. URL:https://www.research.manchester.ac.uk/portal/files/107169964/ICAS19_A_Navigational_System_for_Quadcopter_Remote_Inspection_of_Offshore_Substations.pdf
3. Welburn, E, Hakim Khalili, H, Gupta, A, Watson, S & Carrasco, J 2019, A Navigational System for Quadcopter Remote Inspection of Offshore Substations. in The Fifteenth International Conference on Autonomic and Autonomous Systems 2019. URL:https://research.manchester.ac.uk/portal/files/107169964/ICAS19_A_Navigational_System_for_Quadcopter_Remote_Inspection_of_Offshore_Substations.pdf
4. E. Horváth, C. Hajdu, C. Radu and Á. Ballagi, "Range Sensor-based Occupancy Grid Mapping with Signatures," 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 2019, pp. 1-5.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8765684&isnumber=8765679
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8765684&isnumber=8765679
5. Josie Hughes, Masaru Shimizu, and Arnoud Visser, "A Review of Robot Rescue Simulation Platforms for Robotics Education"
URL: https://2019.robocup.org/downloads/program/HughesEtAl2019.pdf
@@ -408,7 +402,7 @@ URL: https://arxiv.org/abs/1910.01557
URL: https://pdfs.semanticscholar.org/5c06/f3cb9542a51e1bf1a32523c1bc7fea6cecc5.pdf
9. Brijen Thananjeyan, et al. "ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions"
URL: https://arxiv.org/pdf/2003.01410.pdf
URL: https://arxiv.org/pdf/2003.01410
# Others