try implementing

This commit is contained in:
Atsushi Sakai
2017-07-30 23:50:07 -07:00
parent 46b547d087
commit bee232e84d
5 changed files with 363 additions and 0 deletions

View File

View File

@@ -0,0 +1,295 @@
#! /usr/bin/python
"""
Path tracking simulation with rear wheel feedback steering control and PID speed control.
author: Atsushi Sakai
"""
import numpy as np
import math
import matplotlib.pyplot as plt
import unicycle_model
from pycubicspline import pycubicspline
from matplotrecorder import matplotrecorder
import scipy.linalg as la
Kp = 1.0 # speed propotional gain
# steering control parameter
KTH = 1.0
KE = 0.5
Q = np.eye(4)
R = np.eye(1)
animation = True
# animation = False
matplotrecorder.donothing = True
def PIDControl(target, current):
a = Kp * (target - current)
return a
def pi_2_pi(angle):
while (angle > math.pi):
angle = angle - 2.0 * math.pi
while (angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
def solve_DARE(A, B, Q, R):
"""
solve a discrete time_Algebraic Riccati equation (DARE)
"""
X = Q
maxiter = 150
eps = 0.01
for i in range(maxiter):
Xn = A.T * X * A - A.T * X * B * \
la.inv(R + B.T * X * B) * B.T * X * A + Q
if (abs(Xn - X)).max() < eps:
X = Xn
break
X = Xn
return Xn
def dlqr(A, B, Q, R):
"""Solve the discrete time lqr controller.
x[k+1] = A x[k] + B u[k]
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
# ref Bertsekas, p.151
"""
# first, try to solve the ricatti equation
X = solve_DARE(A, B, Q, R)
# compute the LQR gain
K = np.matrix(la.inv(B.T * X * B + R) * (B.T * X * A))
eigVals, eigVecs = la.eig(A - B * K)
return K, X, eigVals
def rear_wheel_feedback_control(state, cx, cy, cyaw, ck, preind):
ind, e = calc_nearest_index(state, cx, cy, cyaw)
k = ck[ind]
v = state.v
th_e = pi_2_pi(state.yaw - cyaw[ind])
omega = v * k * math.cos(th_e) / (1.0 - k * e) - \
KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e
if th_e == 0.0 or omega == 0.0:
return 0.0, ind
delta = math.atan2(unicycle_model.L * omega / v, 1.0)
# print(k, v, e, th_e, omega, delta)
return delta, ind
def lqr_steering_control(state, cx, cy, cyaw, ck, target_ind):
ind, e = calc_nearest_index(state, cx, cy, cyaw)
k = ck[ind]
v = state.v
th_e = pi_2_pi(state.yaw - cyaw[ind])
A = np.matrix(np.zeros((4, 4)))
A[0, 0] = 1.0
A[0, 1] = unicycle_model.dt
A[1, 2] = v
A[2, 2] = 1.0
A[2, 3] = unicycle_model.dt
# print(A)
B = np.matrix(np.zeros((4, 1)))
B[3, 0] = v / unicycle_model.L
K, _, _ = dlqr(A, B, Q, R)
x = np.matrix(np.zeros((4, 1)))
x[0, 0] = e
x[1, 0] = 0.0
x[2, 0] = th_e
x[3, 0] = 0.0
ff = math.atan2(unicycle_model.L * k, 1)
fb = pi_2_pi((-K * x)[0, 0])
print(math.degrees(th_e))
# print(K, x)
print(math.degrees(ff), math.degrees(fb))
delta = ff + fb
# print(delta)
return delta
def calc_nearest_index(state, cx, cy, cyaw):
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
mind = min(d)
ind = d.index(mind)
dxl = cx[ind] - state.x
dyl = cy[ind] - state.y
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
if angle < 0:
mind *= -1
return ind, mind
def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
T = 500.0 # max simulation time
goal_dis = 0.3
stop_speed = 0.05
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind = calc_nearest_index(state, cx, cy, cyaw)
while T >= time:
di, target_ind = rear_wheel_feedback_control(
state, cx, cy, cyaw, ck, target_ind)
dl = lqr_steering_control(state, cx, cy, cyaw, ck, target_ind)
# print(di, dl)
ai = PIDControl(speed_profile[target_ind], state.v)
# state = unicycle_model.update(state, ai, di)
state = unicycle_model.update(state, ai, dl)
if abs(state.v) <= stop_speed:
target_ind += 1
time = time + unicycle_model.dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
print("Goal")
break
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if target_ind % 1 == 0 and animation:
plt.cla()
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed[km/h]:" + str(round(state.v * 3.6, 2)) +
",target index:" + str(target_ind))
plt.pause(0.0001)
matplotrecorder.save_frame() # save each frame
plt.close()
return t, x, y, yaw, v
def calc_speed_profile(cx, cy, cyaw, target_speed):
speed_profile = [target_speed] * len(cx)
direction = 1.0
# Set stop point
for i in range(len(cx) - 1):
dyaw = cyaw[i + 1] - cyaw[i]
switch = math.pi / 4.0 <= dyaw < math.pi / 2.0
if switch:
direction *= -1
if direction != 1.0:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
if switch:
speed_profile[i] = 0.0
speed_profile[-1] = 0.0
# flg, ax = plt.subplots(1)
# plt.plot(speed_profile, "-r")
# plt.show()
return speed_profile
def main():
print("rear wheel feedback tracking start!!")
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0]
goal = [ax[-1], ay[-1]]
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
target_speed = 10.0 / 3.6
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)
if animation:
matplotrecorder.save_movie("animation.gif", 0.1) # gif is ok.
flg, _ = plt.subplots(1)
plt.plot(ax, ay, "xb", label="input")
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
flg, ax = plt.subplots(1)
plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
flg, ax = plt.subplots(1)
plt.plot(s, ck, "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
if __name__ == '__main__':
main()

Submodule PathTracking/lqr/matplotrecorder added at aac964fe89

Submodule PathTracking/lqr/pycubicspline added at 8563587146

View File

@@ -0,0 +1,66 @@
#! /usr/bin/python
# -*- coding: utf-8 -*-
"""
author Atsushi Sakai
"""
import math
dt = 0.1 # [s]
L = 2.9 # [m]
class State:
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
def update(state, a, delta):
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.v = state.v + a * dt
return state
if __name__ == '__main__':
print("start unicycle simulation")
import matplotlib.pyplot as plt
T = 100
a = [1.0] * T
delta = [math.radians(1.0)] * T
# print(delta)
# print(a, delta)
state = State()
x = []
y = []
yaw = []
v = []
for (ai, di) in zip(a, delta):
state = update(state, ai, di)
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
flg, ax = plt.subplots(1)
plt.plot(x, y)
plt.axis("equal")
plt.grid(True)
flg, ax = plt.subplots(1)
plt.plot(v)
plt.grid(True)
plt.show()