mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 02:48:02 -05:00
try implementing
This commit is contained in:
0
PathTracking/lqr/__init__.py
Normal file
0
PathTracking/lqr/__init__.py
Normal file
295
PathTracking/lqr/lqr_tracking.py
Normal file
295
PathTracking/lqr/lqr_tracking.py
Normal file
@@ -0,0 +1,295 @@
|
||||
#! /usr/bin/python
|
||||
"""
|
||||
|
||||
Path tracking simulation with rear wheel feedback steering control and PID speed control.
|
||||
|
||||
author: Atsushi Sakai
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
import unicycle_model
|
||||
from pycubicspline import pycubicspline
|
||||
from matplotrecorder import matplotrecorder
|
||||
import scipy.linalg as la
|
||||
|
||||
Kp = 1.0 # speed propotional gain
|
||||
# steering control parameter
|
||||
KTH = 1.0
|
||||
KE = 0.5
|
||||
|
||||
Q = np.eye(4)
|
||||
R = np.eye(1)
|
||||
|
||||
animation = True
|
||||
# animation = False
|
||||
|
||||
matplotrecorder.donothing = True
|
||||
|
||||
|
||||
def PIDControl(target, current):
|
||||
a = Kp * (target - current)
|
||||
|
||||
return a
|
||||
|
||||
|
||||
def pi_2_pi(angle):
|
||||
while (angle > math.pi):
|
||||
angle = angle - 2.0 * math.pi
|
||||
|
||||
while (angle < -math.pi):
|
||||
angle = angle + 2.0 * math.pi
|
||||
|
||||
return angle
|
||||
|
||||
|
||||
def solve_DARE(A, B, Q, R):
|
||||
"""
|
||||
solve a discrete time_Algebraic Riccati equation (DARE)
|
||||
"""
|
||||
X = Q
|
||||
maxiter = 150
|
||||
eps = 0.01
|
||||
|
||||
for i in range(maxiter):
|
||||
Xn = A.T * X * A - A.T * X * B * \
|
||||
la.inv(R + B.T * X * B) * B.T * X * A + Q
|
||||
if (abs(Xn - X)).max() < eps:
|
||||
X = Xn
|
||||
break
|
||||
X = Xn
|
||||
|
||||
return Xn
|
||||
|
||||
|
||||
def dlqr(A, B, Q, R):
|
||||
"""Solve the discrete time lqr controller.
|
||||
x[k+1] = A x[k] + B u[k]
|
||||
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
|
||||
# ref Bertsekas, p.151
|
||||
"""
|
||||
|
||||
# first, try to solve the ricatti equation
|
||||
X = solve_DARE(A, B, Q, R)
|
||||
|
||||
# compute the LQR gain
|
||||
K = np.matrix(la.inv(B.T * X * B + R) * (B.T * X * A))
|
||||
|
||||
eigVals, eigVecs = la.eig(A - B * K)
|
||||
|
||||
return K, X, eigVals
|
||||
|
||||
|
||||
def rear_wheel_feedback_control(state, cx, cy, cyaw, ck, preind):
|
||||
ind, e = calc_nearest_index(state, cx, cy, cyaw)
|
||||
|
||||
k = ck[ind]
|
||||
v = state.v
|
||||
th_e = pi_2_pi(state.yaw - cyaw[ind])
|
||||
|
||||
omega = v * k * math.cos(th_e) / (1.0 - k * e) - \
|
||||
KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e
|
||||
|
||||
if th_e == 0.0 or omega == 0.0:
|
||||
return 0.0, ind
|
||||
|
||||
delta = math.atan2(unicycle_model.L * omega / v, 1.0)
|
||||
# print(k, v, e, th_e, omega, delta)
|
||||
|
||||
return delta, ind
|
||||
|
||||
|
||||
def lqr_steering_control(state, cx, cy, cyaw, ck, target_ind):
|
||||
ind, e = calc_nearest_index(state, cx, cy, cyaw)
|
||||
|
||||
k = ck[ind]
|
||||
v = state.v
|
||||
th_e = pi_2_pi(state.yaw - cyaw[ind])
|
||||
|
||||
A = np.matrix(np.zeros((4, 4)))
|
||||
A[0, 0] = 1.0
|
||||
A[0, 1] = unicycle_model.dt
|
||||
A[1, 2] = v
|
||||
A[2, 2] = 1.0
|
||||
A[2, 3] = unicycle_model.dt
|
||||
# print(A)
|
||||
|
||||
B = np.matrix(np.zeros((4, 1)))
|
||||
B[3, 0] = v / unicycle_model.L
|
||||
|
||||
K, _, _ = dlqr(A, B, Q, R)
|
||||
|
||||
x = np.matrix(np.zeros((4, 1)))
|
||||
|
||||
x[0, 0] = e
|
||||
x[1, 0] = 0.0
|
||||
x[2, 0] = th_e
|
||||
x[3, 0] = 0.0
|
||||
|
||||
ff = math.atan2(unicycle_model.L * k, 1)
|
||||
fb = pi_2_pi((-K * x)[0, 0])
|
||||
print(math.degrees(th_e))
|
||||
# print(K, x)
|
||||
print(math.degrees(ff), math.degrees(fb))
|
||||
|
||||
delta = ff + fb
|
||||
# print(delta)
|
||||
return delta
|
||||
|
||||
|
||||
def calc_nearest_index(state, cx, cy, cyaw):
|
||||
dx = [state.x - icx for icx in cx]
|
||||
dy = [state.y - icy for icy in cy]
|
||||
|
||||
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
|
||||
|
||||
mind = min(d)
|
||||
|
||||
ind = d.index(mind)
|
||||
|
||||
dxl = cx[ind] - state.x
|
||||
dyl = cy[ind] - state.y
|
||||
|
||||
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
|
||||
if angle < 0:
|
||||
mind *= -1
|
||||
|
||||
return ind, mind
|
||||
|
||||
|
||||
def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
|
||||
T = 500.0 # max simulation time
|
||||
goal_dis = 0.3
|
||||
stop_speed = 0.05
|
||||
|
||||
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
|
||||
|
||||
time = 0.0
|
||||
x = [state.x]
|
||||
y = [state.y]
|
||||
yaw = [state.yaw]
|
||||
v = [state.v]
|
||||
t = [0.0]
|
||||
target_ind = calc_nearest_index(state, cx, cy, cyaw)
|
||||
|
||||
while T >= time:
|
||||
di, target_ind = rear_wheel_feedback_control(
|
||||
state, cx, cy, cyaw, ck, target_ind)
|
||||
|
||||
dl = lqr_steering_control(state, cx, cy, cyaw, ck, target_ind)
|
||||
# print(di, dl)
|
||||
|
||||
ai = PIDControl(speed_profile[target_ind], state.v)
|
||||
# state = unicycle_model.update(state, ai, di)
|
||||
state = unicycle_model.update(state, ai, dl)
|
||||
|
||||
if abs(state.v) <= stop_speed:
|
||||
target_ind += 1
|
||||
|
||||
time = time + unicycle_model.dt
|
||||
|
||||
# check goal
|
||||
dx = state.x - goal[0]
|
||||
dy = state.y - goal[1]
|
||||
if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
|
||||
print("Goal")
|
||||
break
|
||||
|
||||
x.append(state.x)
|
||||
y.append(state.y)
|
||||
yaw.append(state.yaw)
|
||||
v.append(state.v)
|
||||
t.append(time)
|
||||
|
||||
if target_ind % 1 == 0 and animation:
|
||||
plt.cla()
|
||||
plt.plot(cx, cy, "-r", label="course")
|
||||
plt.plot(x, y, "ob", label="trajectory")
|
||||
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.title("speed[km/h]:" + str(round(state.v * 3.6, 2)) +
|
||||
",target index:" + str(target_ind))
|
||||
plt.pause(0.0001)
|
||||
matplotrecorder.save_frame() # save each frame
|
||||
|
||||
plt.close()
|
||||
return t, x, y, yaw, v
|
||||
|
||||
|
||||
def calc_speed_profile(cx, cy, cyaw, target_speed):
|
||||
speed_profile = [target_speed] * len(cx)
|
||||
|
||||
direction = 1.0
|
||||
|
||||
# Set stop point
|
||||
for i in range(len(cx) - 1):
|
||||
dyaw = cyaw[i + 1] - cyaw[i]
|
||||
switch = math.pi / 4.0 <= dyaw < math.pi / 2.0
|
||||
|
||||
if switch:
|
||||
direction *= -1
|
||||
|
||||
if direction != 1.0:
|
||||
speed_profile[i] = - target_speed
|
||||
else:
|
||||
speed_profile[i] = target_speed
|
||||
|
||||
if switch:
|
||||
speed_profile[i] = 0.0
|
||||
|
||||
speed_profile[-1] = 0.0
|
||||
|
||||
# flg, ax = plt.subplots(1)
|
||||
# plt.plot(speed_profile, "-r")
|
||||
# plt.show()
|
||||
|
||||
return speed_profile
|
||||
|
||||
|
||||
def main():
|
||||
print("rear wheel feedback tracking start!!")
|
||||
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
|
||||
ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0]
|
||||
goal = [ax[-1], ay[-1]]
|
||||
|
||||
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
|
||||
target_speed = 10.0 / 3.6
|
||||
|
||||
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
|
||||
|
||||
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)
|
||||
|
||||
if animation:
|
||||
matplotrecorder.save_movie("animation.gif", 0.1) # gif is ok.
|
||||
|
||||
flg, _ = plt.subplots(1)
|
||||
plt.plot(ax, ay, "xb", label="input")
|
||||
plt.plot(cx, cy, "-r", label="spline")
|
||||
plt.plot(x, y, "-g", label="tracking")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.legend()
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.xlabel("line length[m]")
|
||||
plt.ylabel("yaw angle[deg]")
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(s, ck, "-r", label="curvature")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.xlabel("line length[m]")
|
||||
plt.ylabel("curvature [1/m]")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
1
PathTracking/lqr/matplotrecorder
Submodule
1
PathTracking/lqr/matplotrecorder
Submodule
Submodule PathTracking/lqr/matplotrecorder added at aac964fe89
1
PathTracking/lqr/pycubicspline
Submodule
1
PathTracking/lqr/pycubicspline
Submodule
Submodule PathTracking/lqr/pycubicspline added at 8563587146
66
PathTracking/lqr/unicycle_model.py
Normal file
66
PathTracking/lqr/unicycle_model.py
Normal file
@@ -0,0 +1,66 @@
|
||||
#! /usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
|
||||
|
||||
author Atsushi Sakai
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
dt = 0.1 # [s]
|
||||
L = 2.9 # [m]
|
||||
|
||||
|
||||
class State:
|
||||
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.yaw = yaw
|
||||
self.v = v
|
||||
|
||||
|
||||
def update(state, a, delta):
|
||||
state.x = state.x + state.v * math.cos(state.yaw) * dt
|
||||
state.y = state.y + state.v * math.sin(state.yaw) * dt
|
||||
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
|
||||
state.v = state.v + a * dt
|
||||
|
||||
return state
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("start unicycle simulation")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
T = 100
|
||||
a = [1.0] * T
|
||||
delta = [math.radians(1.0)] * T
|
||||
# print(delta)
|
||||
# print(a, delta)
|
||||
|
||||
state = State()
|
||||
|
||||
x = []
|
||||
y = []
|
||||
yaw = []
|
||||
v = []
|
||||
|
||||
for (ai, di) in zip(a, delta):
|
||||
state = update(state, ai, di)
|
||||
|
||||
x.append(state.x)
|
||||
y.append(state.y)
|
||||
yaw.append(state.yaw)
|
||||
v.append(state.v)
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(x, y)
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(v)
|
||||
plt.grid(True)
|
||||
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user