mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 21:58:46 -05:00
bug fix
This commit is contained in:
@@ -14,6 +14,8 @@ import unicycle_model
|
||||
|
||||
Kp = 1.0 # speed propotional gain
|
||||
Lf = 1.0 # look-ahead distance
|
||||
# animation = True
|
||||
animation = False
|
||||
|
||||
|
||||
def PIDControl(target, current):
|
||||
@@ -29,16 +31,23 @@ def pure_pursuit_control(state, cx, cy, pind):
|
||||
if pind >= ind:
|
||||
ind = pind
|
||||
|
||||
tx = cx[ind]
|
||||
ty = cy[ind]
|
||||
# print(pind, ind)
|
||||
if ind < len(cx):
|
||||
tx = cx[ind]
|
||||
ty = cy[ind]
|
||||
else:
|
||||
tx = cx[-1]
|
||||
ty = cy[-1]
|
||||
ind = len(cx) - 1
|
||||
|
||||
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
|
||||
|
||||
if state.v < 0: # back
|
||||
if alpha > 0:
|
||||
alpha = math.pi - alpha
|
||||
else:
|
||||
alpha = math.pi + alpha
|
||||
alpha = math.pi - alpha
|
||||
# if alpha > 0:
|
||||
# alpha = math.pi - alpha
|
||||
# else:
|
||||
# alpha = math.pi + alpha
|
||||
|
||||
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
|
||||
|
||||
@@ -64,13 +73,15 @@ def calc_target_index(state, cx, cy):
|
||||
return ind
|
||||
|
||||
|
||||
def closed_loop_prediction(cx, cy, cyaw, speed_profile):
|
||||
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
|
||||
|
||||
T = 100.0 # max simulation time
|
||||
T = 500.0 # max simulation time
|
||||
goal_dis = 0.3
|
||||
stop_speed = 0.05
|
||||
|
||||
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
|
||||
|
||||
lastIndex = len(cx) - 1
|
||||
# lastIndex = len(cx) - 1
|
||||
time = 0.0
|
||||
x = [state.x]
|
||||
y = [state.y]
|
||||
@@ -78,34 +89,40 @@ def closed_loop_prediction(cx, cy, cyaw, speed_profile):
|
||||
v = [state.v]
|
||||
t = [0.0]
|
||||
target_ind = calc_target_index(state, cx, cy)
|
||||
# print(target_ind)
|
||||
|
||||
while T >= time and lastIndex > target_ind:
|
||||
while T >= time:
|
||||
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
|
||||
ai = PIDControl(speed_profile[target_ind], state.v)
|
||||
state = unicycle_model.update(state, ai, di)
|
||||
|
||||
if abs(state.v) <= 0.05:
|
||||
if abs(state.v) <= stop_speed:
|
||||
target_ind += 1
|
||||
|
||||
time = time + unicycle_model.dt
|
||||
|
||||
# check goal
|
||||
dx = state.x - goal[0]
|
||||
dy = state.y - goal[1]
|
||||
if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
|
||||
print("Goal")
|
||||
break
|
||||
|
||||
x.append(state.x)
|
||||
y.append(state.y)
|
||||
yaw.append(state.yaw)
|
||||
v.append(state.v)
|
||||
t.append(time)
|
||||
|
||||
plt.cla()
|
||||
plt.plot(cx, cy, "-r", label="course")
|
||||
plt.plot(x, y, "ob", label="trajectory")
|
||||
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.title("speed:" + str(round(state.v, 2)) +
|
||||
"tind:" + str(target_ind))
|
||||
plt.pause(0.0001)
|
||||
# input()
|
||||
if target_ind % 20 == 0 and animation:
|
||||
plt.cla()
|
||||
plt.plot(cx, cy, "-r", label="course")
|
||||
plt.plot(x, y, "ob", label="trajectory")
|
||||
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.title("speed:" + str(round(state.v, 2)) +
|
||||
"tind:" + str(target_ind))
|
||||
plt.pause(0.0001)
|
||||
|
||||
return t, x, y, yaw, v
|
||||
|
||||
@@ -185,45 +202,31 @@ def calc_speed_profile(cx, cy, cyaw, target_speed, a):
|
||||
speed_profile[-i - 1] = tspeed
|
||||
|
||||
# flg, ax = plt.subplots(1)
|
||||
plt.plot(speed_profile, "-r")
|
||||
# plt.plot(cx, cy, "-r")
|
||||
plt.show()
|
||||
# plt.plot(speed_profile, "-r")
|
||||
# plt.show()
|
||||
|
||||
return speed_profile
|
||||
|
||||
|
||||
def extend_path(cx, cy, cyaw):
|
||||
|
||||
dl = 0.1
|
||||
dl_list = [dl] * (int(Lf / dl) + 0)
|
||||
|
||||
move_direction = math.atan2(cy[-1] - cy[-2], cx[-1] - cx[-2])
|
||||
is_back = abs(move_direction - cyaw[-1]) >= math.pi / 2.0
|
||||
|
||||
for idl in dl_list:
|
||||
if is_back:
|
||||
idl *= -1
|
||||
cx = np.append(cx, cx[-1] + idl * math.cos(cyaw[-1]))
|
||||
cy = np.append(cy, cy[-1] + idl * math.sin(cyaw[-1]))
|
||||
cyaw = np.append(cyaw, cyaw[-1])
|
||||
|
||||
return cx, cy, cyaw
|
||||
|
||||
|
||||
def main():
|
||||
import pandas as pd
|
||||
data = pd.read_csv("rrt_course.csv")
|
||||
cx = np.array(data["x"])
|
||||
cy = np.array(data["y"])
|
||||
cyaw = np.array(data["yaw"])
|
||||
|
||||
target_speed = 10.0 / 3.6
|
||||
a = 0.1
|
||||
|
||||
speed_profile = calc_speed_profile(cx, cy, cyaw, target_speed, a)
|
||||
|
||||
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, speed_profile)
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(cx, cy, ".r", label="course")
|
||||
plt.plot(x, y, "-b", label="trajectory")
|
||||
plt.legend()
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(t, [iv * 3.6 for iv in v], "-r")
|
||||
plt.xlabel("Time[s]")
|
||||
plt.ylabel("Speed[km/h]")
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
def main2():
|
||||
# target course
|
||||
import numpy as np
|
||||
cx = np.arange(0, 50, 0.1)
|
||||
@@ -233,8 +236,8 @@ def main2():
|
||||
|
||||
T = 15.0 # max simulation time
|
||||
|
||||
# state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
|
||||
state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
|
||||
state = unicycle_model.State(x=-0.0, y=-3.0, yaw=0.0, v=0.0)
|
||||
# state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
|
||||
# state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6)
|
||||
# state = unicycle_model.State(
|
||||
# x=3.0, y=5.0, yaw=math.radians(-40.0), v=-10.0 / 3.6)
|
||||
@@ -289,6 +292,43 @@ def main2():
|
||||
plt.show()
|
||||
|
||||
|
||||
def main2():
|
||||
import pandas as pd
|
||||
data = pd.read_csv("rrt_course.csv")
|
||||
cx = np.array(data["x"])
|
||||
cy = np.array(data["y"])
|
||||
cyaw = np.array(data["yaw"])
|
||||
|
||||
target_speed = 10.0 / 3.6
|
||||
a = 0.1
|
||||
|
||||
goal = [cx[-1], cy[-1]]
|
||||
|
||||
cx, cy, cyaw = extend_path(cx, cy, cyaw)
|
||||
|
||||
speed_profile = calc_speed_profile(cx, cy, cyaw, target_speed, a)
|
||||
|
||||
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, speed_profile, goal)
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(cx, cy, ".r", label="course")
|
||||
plt.plot(x, y, "-b", label="trajectory")
|
||||
plt.plot(goal[0], goal[1], "xg", label="goal")
|
||||
plt.legend()
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(t, [iv * 3.6 for iv in v], "-r")
|
||||
plt.xlabel("Time[s]")
|
||||
plt.ylabel("Speed[km/h]")
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("Pure pursuit path tracking simulation start")
|
||||
main()
|
||||
# main()
|
||||
main2()
|
||||
|
||||
Reference in New Issue
Block a user