rear_wheel_feedback clean up and add test code

This commit is contained in:
Atsushi Sakai
2017-12-26 10:50:39 -08:00
parent acf07aa1f9
commit fba64ca254
5 changed files with 75 additions and 111 deletions

3
.gitmodules vendored
View File

@@ -1,9 +1,6 @@
[submodule "PathTracking/rear_wheel_feedback/pycubicspline"]
path = PathTracking/rear_wheel_feedback/pycubicspline
url = https://github.com/AtsushiSakai/pycubicspline.git
[submodule "PathTracking/rear_wheel_feedback/matplotrecorder"]
path = PathTracking/rear_wheel_feedback/matplotrecorder
url = https://github.com/AtsushiSakai/matplotrecorder.git
[submodule "PathTracking/lqr/matplotrecorder"]
path = PathTracking/lqr/matplotrecorder
url = https://github.com/AtsushiSakai/matplotrecorder

View File

@@ -1,25 +1,43 @@
#! /usr/bin/python
"""
Path tracking simulation with rear wheel feedback steering control and PID speed control.
author: Atsushi Sakai
author: Atsushi Sakai(@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import unicycle_model
from pycubicspline import pycubicspline
from matplotrecorder import matplotrecorder
Kp = 1.0 # speed propotional gain
# steering control parameter
KTH = 1.0
KE = 0.5
dt = 0.1 # [s]
L = 2.9 # [m]
# animation = True
animation = False
show_animation = True
# show_animation = False
class State:
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
def update(state, a, delta):
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.v = state.v + a * dt
return state
def PIDControl(target, current):
@@ -51,7 +69,7 @@ def rear_wheel_feedback_control(state, cx, cy, cyaw, ck, preind):
if th_e == 0.0 or omega == 0.0:
return 0.0, ind
delta = math.atan2(unicycle_model.L * omega / v, 1.0)
delta = math.atan2(L * omega / v, 1.0)
# print(k, v, e, th_e, omega, delta)
return delta, ind
@@ -83,7 +101,7 @@ def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
goal_dis = 0.3
stop_speed = 0.05
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
state = State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
time = 0.0
x = [state.x]
@@ -91,24 +109,26 @@ def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
yaw = [state.yaw]
v = [state.v]
t = [0.0]
goal_flag = False
target_ind = calc_nearest_index(state, cx, cy, cyaw)
while T >= time:
di, target_ind = rear_wheel_feedback_control(
state, cx, cy, cyaw, ck, target_ind)
ai = PIDControl(speed_profile[target_ind], state.v)
state = unicycle_model.update(state, ai, di)
state = update(state, ai, di)
if abs(state.v) <= stop_speed:
target_ind += 1
time = time + unicycle_model.dt
time = time + dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
print("Goal")
goal_flag = True
break
x.append(state.x)
@@ -117,7 +137,7 @@ def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
v.append(state.v)
t.append(time)
if target_ind % 1 == 0 and animation:
if target_ind % 1 == 0 and show_animation:
plt.cla()
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
@@ -127,10 +147,8 @@ def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
plt.title("speed[km/h]:" + str(round(state.v * 3.6, 2)) +
",target index:" + str(target_ind))
plt.pause(0.0001)
matplotrecorder.save_frame() # save each frame
plt.close()
return t, x, y, yaw, v
return t, x, y, yaw, v, goal_flag
def calc_speed_profile(cx, cy, cyaw, target_speed):
@@ -175,36 +193,39 @@ def main():
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)
t, x, y, yaw, v, goal_flag = closed_loop_prediction(
cx, cy, cyaw, ck, sp, goal)
if animation:
matplotrecorder.save_movie("animation.gif", 0.1) # gif is ok.
# Test
assert goal_flag, "Cannot goal"
flg, _ = plt.subplots(1)
plt.plot(ax, ay, "xb", label="input")
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
if show_animation:
plt.close()
flg, _ = plt.subplots(1)
plt.plot(ax, ay, "xb", label="input")
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
flg, ax = plt.subplots(1)
plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
flg, ax = plt.subplots(1)
plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
flg, ax = plt.subplots(1)
plt.plot(s, ck, "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
flg, ax = plt.subplots(1)
plt.plot(s, ck, "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
plt.show()
if __name__ == '__main__':

View File

@@ -1,68 +0,0 @@
#! /usr/bin/python
# -*- coding: utf-8 -*-
"""
author Atsushi Sakai
"""
import math
dt = 0.1 # [s]
L = 2.9 # [m]
class State:
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
def update(state, a, delta):
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.v = state.v + a * dt
return state
if __name__ == '__main__':
print("start unicycle simulation")
import matplotlib.pyplot as plt
T = 100
a = [1.0] * T
delta = [math.radians(1.0)] * T
# print(delta)
# print(a, delta)
state = State()
x = []
y = []
yaw = []
v = []
for (ai, di) in zip(a, delta):
state = update(state, ai, di)
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
flg, ax = plt.subplots(1)
plt.plot(x, y)
plt.axis("equal")
plt.grid(True)
flg, ax = plt.subplots(1)
plt.plot(v)
plt.grid(True)
plt.show()

View File

@@ -0,0 +1,15 @@
from unittest import TestCase
import sys
sys.path.append("./PathTracking/rear_wheel_feedback/")
from PathTracking.rear_wheel_feedback import rear_wheel_feedback as m
print(__file__)
class Test(TestCase):
def test1(self):
m.show_animation = False
m.main()