Compare commits
242 Commits
feat/pic
...
sumcheck-e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e02de2f485 | ||
|
|
7a32a88d6d | ||
|
|
4cc5d2d71c | ||
|
|
6e3eecd8ca | ||
|
|
0c340924eb | ||
|
|
9d461be0bd | ||
|
|
c123940abb | ||
|
|
af4ab88f3a | ||
|
|
1ae1fa892c | ||
|
|
bf89f96dff | ||
|
|
ebf9fc4740 | ||
|
|
b56187452f | ||
|
|
ba41d3e97b | ||
|
|
7fe2a11941 | ||
|
|
5144c15845 | ||
|
|
013f1efa09 | ||
|
|
b2b3702b20 | ||
|
|
5b8e22953b | ||
|
|
452aea71af | ||
|
|
356b13f650 | ||
|
|
2952401e40 | ||
|
|
cf9579d4f9 | ||
|
|
a50af2f06e | ||
|
|
bdf4f1ee24 | ||
|
|
9af6bb5666 | ||
|
|
da31adefce | ||
|
|
a7b0dc40c1 | ||
|
|
9b39e771ea | ||
|
|
4a35eece51 | ||
|
|
4c9b3c00a5 | ||
|
|
c6719167ce | ||
|
|
cd3769d6b7 | ||
|
|
b93b1d0aaf | ||
|
|
6a96eef8dc | ||
|
|
828fc9c006 | ||
|
|
53395312e3 | ||
|
|
95ab6de059 | ||
|
|
9c9311bee0 | ||
|
|
406020bda6 | ||
|
|
709e6a12e5 | ||
|
|
0e067b296f | ||
|
|
b9409d2109 | ||
|
|
19fe6f6d5d | ||
|
|
be4b636494 | ||
|
|
9a63f17e1b | ||
|
|
425dd2c38d | ||
|
|
0c6fe543fa | ||
|
|
c5ed01b52c | ||
|
|
57ac6a13dc | ||
|
|
7833324d9c | ||
|
|
2111c3a91a | ||
|
|
25ac705c3b | ||
|
|
ef757e8210 | ||
|
|
009a17af11 | ||
|
|
2c1431d904 | ||
|
|
4b50103151 | ||
|
|
e24f74c97a | ||
|
|
77ebc4848e | ||
|
|
fa5064784f | ||
|
|
919ff42f49 | ||
|
|
f0b86b9c06 | ||
|
|
79719fcb0f | ||
|
|
a1ff989740 | ||
|
|
1f2144a57c | ||
|
|
db4c07dcaf | ||
|
|
d4f39efea3 | ||
|
|
7293058246 | ||
|
|
03136f1074 | ||
|
|
3ef0d0c66e | ||
|
|
0dff1f9302 | ||
|
|
0d806d96ca | ||
|
|
792a2e5f97 | ||
|
|
b6b5011a47 | ||
|
|
7ac463c3d9 | ||
|
|
287f53ff16 | ||
|
|
89082fb561 | ||
|
|
f6fee8e201 | ||
|
|
f5492a97fb | ||
|
|
2ffda0ffac | ||
|
|
08ec0b1ff6 | ||
|
|
fa219d9c95 | ||
|
|
0e84fb4b76 | ||
|
|
d8059a2a4e | ||
|
|
4a65758408 | ||
|
|
1abd2ef9c9 | ||
|
|
9d402df0cf | ||
|
|
7185657ff7 | ||
|
|
b22aa02e91 | ||
|
|
af6bfc9ab0 | ||
|
|
b108c71bdd | ||
|
|
9fc083916d | ||
|
|
87ccd62976 | ||
|
|
d8f2313a01 | ||
|
|
a2ae7a9e2f | ||
|
|
d98b851d62 | ||
|
|
4d19ca0b98 | ||
|
|
2e20be56f7 | ||
|
|
afa61c64f4 | ||
|
|
7934e15768 | ||
|
|
76939f34e0 | ||
|
|
1c1b2bab64 | ||
|
|
d90081926f | ||
|
|
656dd18cf8 | ||
|
|
40309329fb | ||
|
|
2af9e44219 | ||
|
|
e6035698b5 | ||
|
|
e8cd2d7a98 | ||
|
|
efda4de48f | ||
|
|
402c9dfb53 | ||
|
|
9a6ab924c2 | ||
|
|
275b2f4958 | ||
|
|
4b221e9665 | ||
|
|
965bf757f9 | ||
|
|
f9755980f0 | ||
|
|
bb62e716b4 | ||
|
|
c046fd17c6 | ||
|
|
82d1ff4769 | ||
|
|
d1f19af64d | ||
|
|
b1af193f6f | ||
|
|
49c7fb0db1 | ||
|
|
4664cfded5 | ||
|
|
fc6badcb35 | ||
|
|
fb9e5c8511 | ||
|
|
518a3ad9b6 | ||
|
|
6681be549a | ||
|
|
319358427f | ||
|
|
8dd52306dc | ||
|
|
418c3d844b | ||
|
|
15a63cc549 | ||
|
|
275eaa9904 | ||
|
|
a91397e2c1 | ||
|
|
29675bb40d | ||
|
|
3b48af55d7 | ||
|
|
481f144dc8 | ||
|
|
086d36dd42 | ||
|
|
6854dbf06a | ||
|
|
0929161a26 | ||
|
|
4f471ffa2a | ||
|
|
27e85d400a | ||
|
|
ba6c3ae59c | ||
|
|
fd08925ed4 | ||
|
|
66018f2367 | ||
|
|
62cf733c5f | ||
|
|
76c3b4ba01 | ||
|
|
4d75fbac93 | ||
|
|
774250926c | ||
|
|
2008259adc | ||
|
|
303a3b8770 | ||
|
|
0d70a0c003 | ||
|
|
c9e1d96b65 | ||
|
|
a02459c64d | ||
|
|
ae060313db | ||
|
|
e16ce1026d | ||
|
|
d84ffd2679 | ||
|
|
a65f44ad31 | ||
|
|
8c1750ea97 | ||
|
|
582107fc7c | ||
|
|
b5923a1791 | ||
|
|
18fdd059da | ||
|
|
382bec4ad3 | ||
|
|
d367a8c1e0 | ||
|
|
3cbdfe7f07 | ||
|
|
e77173f266 | ||
|
|
3582df2669 | ||
|
|
04b1b3dda5 | ||
|
|
b6dded89cd | ||
|
|
5a138367f8 | ||
|
|
a3fc01d88d | ||
|
|
d84cab79fd | ||
|
|
46d7b88f6e | ||
|
|
b20ef93c2d | ||
|
|
6b1b735576 | ||
|
|
b2eecd02af | ||
|
|
b13d993f5d | ||
|
|
4f6b4f7dcf | ||
|
|
19721cfab6 | ||
|
|
3c068ae4e7 | ||
|
|
bfd510b3bb | ||
|
|
d2b9ec1908 | ||
|
|
77a7613aa2 | ||
|
|
5a96f9937d | ||
|
|
aaa3808c81 | ||
|
|
759b7b26d6 | ||
|
|
1874ade68a | ||
|
|
96fe5bf283 | ||
|
|
f0a0bb5974 | ||
|
|
69af0bef91 | ||
|
|
45f6db666b | ||
|
|
4c235bf5f5 | ||
|
|
a0f35ea8cd | ||
|
|
56fcd2e156 | ||
|
|
c1a32a9879 | ||
|
|
67586e01f8 | ||
|
|
9823f87fe2 | ||
|
|
5fda751e93 | ||
|
|
0c58fe2b83 | ||
|
|
b184befc99 | ||
|
|
91471fbbc6 | ||
|
|
4cc30474d4 | ||
|
|
ad932c6b4a | ||
|
|
392fff4e8f | ||
|
|
dc3518c0de | ||
|
|
79b86e0edf | ||
|
|
709009a96a | ||
|
|
b92bc707d1 | ||
|
|
a87f2251da | ||
|
|
31108ee31d | ||
|
|
5f7b36d427 | ||
|
|
41affcdadf | ||
|
|
a22c046410 | ||
|
|
0eb8560c63 | ||
|
|
605c25f9d2 | ||
|
|
5ccf7ff378 | ||
|
|
4beda3a900 | ||
|
|
da122e7ec9 | ||
|
|
f9e46d158c | ||
|
|
65d4f2ba2e | ||
|
|
263b5d95b5 | ||
|
|
64c8c89424 | ||
|
|
dcaa0b4513 | ||
|
|
d5dd16dd9b | ||
|
|
644aa93d3f | ||
|
|
73e39c60f6 | ||
|
|
6d992a9909 | ||
|
|
0df6262961 | ||
|
|
401ec5afac | ||
|
|
629d8cb309 | ||
|
|
dfa5b10adb | ||
|
|
133a1b28bc | ||
|
|
c666786fa1 | ||
|
|
b108234ce4 | ||
|
|
a646c81aaa | ||
|
|
d4dd6d3923 | ||
|
|
fc73f274fa | ||
|
|
c1dfbd28ad | ||
|
|
2d3ab73eca | ||
|
|
9f884f3022 | ||
|
|
a9c846c44c | ||
|
|
8068f16d82 | ||
|
|
82743a098f | ||
|
|
d8d2df1cd0 | ||
|
|
323430cddc |
@@ -26,6 +26,7 @@ KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: All
|
||||
PointerAlignment: Left
|
||||
SortIncludes: false
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceInEmptyParentheses: false
|
||||
|
||||
5
.codespellignore
Normal file
@@ -0,0 +1,5 @@
|
||||
inout
|
||||
crate
|
||||
lmit
|
||||
mut
|
||||
uint
|
||||
11
.github/changed-files.yml
vendored
@@ -1,14 +1,15 @@
|
||||
golang:
|
||||
- goicicle/**/*.go'
|
||||
- wrappers/golang/**/*.go
|
||||
- wrappers/golang/**/*.h
|
||||
- wrappers/golang/**/*.tmpl
|
||||
- go.mod
|
||||
rust:
|
||||
- src/**/*.rs
|
||||
- build.rs
|
||||
- Cargo.toml
|
||||
- wrappers/rust/**/*
|
||||
cpp:
|
||||
- icicle/**/*.cu
|
||||
- icicle/**/*.cuh
|
||||
- icicle/**/*.cpp
|
||||
- icicle/**/*.hpp
|
||||
- icicle/**/*.c
|
||||
- icicle/**/*.h
|
||||
- icicle/**/*.h
|
||||
- icicle/CMakeLists.txt
|
||||
39
.github/workflows/check-changed-files.yml
vendored
Normal file
@@ -0,0 +1,39 @@
|
||||
name: Check Changed Files
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
outputs:
|
||||
golang:
|
||||
description: "Flag for if GoLang files changed"
|
||||
value: ${{ jobs.check-changed-files.outputs.golang }}
|
||||
rust:
|
||||
description: "Flag for if Rust files changed"
|
||||
value: ${{ jobs.check-changed-files.outputs.rust }}
|
||||
cpp_cuda:
|
||||
description: "Flag for if C++/CUDA files changed"
|
||||
value: ${{ jobs.check-changed-files.outputs.cpp_cuda }}
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
name: Check Changed Files
|
||||
runs-on: ubuntu-22.04
|
||||
outputs:
|
||||
golang: ${{ steps.changed_files.outputs.golang }}
|
||||
rust: ${{ steps.changed_files.outputs.rust }}
|
||||
cpp_cuda: ${{ steps.changed_files.outputs.cpp_cuda }}
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Get all changed files
|
||||
id: changed-files-yaml
|
||||
uses: tj-actions/changed-files@v39
|
||||
# https://github.com/tj-actions/changed-files#input_files_yaml_from_source_file
|
||||
with:
|
||||
files_yaml_from_source_file: .github/changed-files.yml
|
||||
- name: Run Changed Files script
|
||||
id: changed_files
|
||||
# https://github.com/tj-actions/changed-files#outputs-
|
||||
run: |
|
||||
echo "golang=${{ steps.changed-files-yaml.outputs.golang_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
echo "rust=${{ steps.changed-files-yaml.outputs.rust_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
echo "cpp_cuda=${{ steps.changed-files-yaml.outputs.cpp_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
20
.github/workflows/codespell.yml
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
name: Check Spelling
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
|
||||
jobs:
|
||||
spelling-checker:
|
||||
name: Check Spelling
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: codespell-project/actions-codespell@v2
|
||||
with:
|
||||
# https://github.com/codespell-project/actions-codespell?tab=readme-ov-file#parameter-skip
|
||||
skip: ./**/target,./**/build,./docs/*.js,./docs/*.json
|
||||
# https://github.com/codespell-project/actions-codespell?tab=readme-ov-file#parameter-ignore_words_file
|
||||
ignore_words_file: .codespellignore
|
||||
74
.github/workflows/cpp_cuda.yml
vendored
Normal file
@@ -0,0 +1,74 @@
|
||||
name: C++/CUDA
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
uses: ./.github/workflows/check-changed-files.yml
|
||||
|
||||
check-format:
|
||||
name: Check Code Format
|
||||
runs-on: ubuntu-22.04
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Check clang-format
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: if [[ $(find ./ \( -path ./icicle/build -prune -o -path ./**/target -prune -o -path ./examples -prune \) -iname *.h -or -iname *.cuh -or -iname *.cu -or -iname *.c -or -iname *.cpp | xargs clang-format --dry-run -ferror-limit=1 -style=file 2>&1) ]]; then echo "Please run clang-format"; exit 1; fi
|
||||
|
||||
test-linux-curve:
|
||||
name: Test on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: [check-changed-files, check-format]
|
||||
strategy:
|
||||
matrix:
|
||||
curve: [bn254, bls12_381, bls12_377, bw6_761]
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Build curve
|
||||
working-directory: ./icicle
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: |
|
||||
mkdir -p build && rm -rf build/*
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_TESTS=ON -DCURVE=${{ matrix.curve }} -DG2=ON -S . -B build
|
||||
cmake --build build -j
|
||||
- name: Run C++ curve Tests
|
||||
working-directory: ./icicle/build/tests
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: ctest
|
||||
|
||||
test-linux-field:
|
||||
name: Test on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: [check-changed-files, check-format]
|
||||
strategy:
|
||||
matrix:
|
||||
field: [babybear]
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Build field
|
||||
working-directory: ./icicle
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: |
|
||||
mkdir -p build && rm -rf build/*
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_TESTS=ON -DFIELD=${{ matrix.field }} -DEXT_FIELD=ON -S . -B build
|
||||
cmake --build build -j
|
||||
- name: Run C++ field Tests
|
||||
working-directory: ./icicle/build/tests
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: ctest
|
||||
46
.github/workflows/deploy-docs.yml
vendored
Normal file
@@ -0,0 +1,46 @@
|
||||
name: Deploy to GitHub Pages
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'docs/**'
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
name: Deploy to GitHub Pages
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
path: 'repo'
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18
|
||||
cache: npm
|
||||
cache-dependency-path: ./repo/docs/package-lock.json
|
||||
|
||||
- name: Install dependencies
|
||||
run: npm install --frozen-lockfile
|
||||
working-directory: ./repo/docs
|
||||
|
||||
- name: Build website
|
||||
run: npm run build
|
||||
working-directory: ./repo/docs
|
||||
|
||||
- name: Copy CNAME to build directory
|
||||
run: echo "dev.ingonyama.com" > ./build/CNAME
|
||||
working-directory: ./repo/docs
|
||||
|
||||
- name: Deploy to GitHub Pages
|
||||
uses: peaceiris/actions-gh-pages@v3
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
publish_dir: ./repo/docs/build
|
||||
user_name: github-actions[bot]
|
||||
user_email: 41898282+github-actions[bot]@users.noreply.github.com
|
||||
working-directory: ./repo/docs
|
||||
60
.github/workflows/examples.yml
vendored
Normal file
@@ -0,0 +1,60 @@
|
||||
# This workflow is a demo of how to run all examples in the Icicle repository.
|
||||
# For each language directory (c++, Rust, etc.) the workflow
|
||||
# (1) loops over all examples (msm, ntt, etc.) and
|
||||
# (2) runs ./compile.sh and ./run.sh in each directory.
|
||||
# The script ./compile.sh should compile the example and ./run.sh should run it.
|
||||
# Each script should return 0 for success and 1 otherwise.
|
||||
|
||||
name: Examples
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
uses: ./.github/workflows/check-changed-files.yml
|
||||
|
||||
run-examples:
|
||||
runs-on: [self-hosted, Linux, X64, icicle, examples]
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: c++ examples
|
||||
working-directory: ./examples/c++
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: |
|
||||
# loop over all directories in the current directory
|
||||
for dir in $(find . -mindepth 1 -maxdepth 1 -type d); do
|
||||
if [ -d "$dir" ]; then
|
||||
echo "Running command in $dir"
|
||||
cd $dir
|
||||
./compile.sh
|
||||
./run.sh
|
||||
cd -
|
||||
fi
|
||||
done
|
||||
- name: Rust examples
|
||||
working-directory: ./examples/rust
|
||||
if: needs.check-changed-files.outputs.rust == 'true'
|
||||
run: |
|
||||
# loop over all directories in the current directory
|
||||
for dir in $(find . -mindepth 1 -maxdepth 1 -type d); do
|
||||
if [ -d "$dir" ]; then
|
||||
echo "Running command in $dir"
|
||||
cd $dir
|
||||
cargo run --release
|
||||
cd -
|
||||
fi
|
||||
done
|
||||
121
.github/workflows/golang.yml
vendored
Normal file
@@ -0,0 +1,121 @@
|
||||
name: GoLang
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
uses: ./.github/workflows/check-changed-files.yml
|
||||
|
||||
check-format:
|
||||
name: Check Code Format
|
||||
runs-on: ubuntu-22.04
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Setup go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.20.0'
|
||||
- name: Check gofmt
|
||||
if: needs.check-changed-files.outputs.golang == 'true'
|
||||
run: if [[ $(go list ./... | xargs go fmt) ]]; then echo "Please run go fmt"; exit 1; fi
|
||||
|
||||
build-linux:
|
||||
name: Build on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: [check-changed-files, check-format]
|
||||
strategy:
|
||||
matrix:
|
||||
curve: [bn254, bls12_381, bls12_377, bw6_761]
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Setup go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.20.0'
|
||||
- name: Build
|
||||
working-directory: ./wrappers/golang
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: ./build.sh ${{ matrix.curve }} -g2 -ecntt # builds a single curve with G2 and ECNTT enabled
|
||||
- name: Upload ICICLE lib artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
with:
|
||||
name: icicle-builds-${{ matrix.curve }}-${{ github.workflow }}-${{ github.sha }}
|
||||
path: |
|
||||
icicle/build/src/curves/libingo_curve_${{ matrix.curve }}.a
|
||||
icicle/build/src/fields/libingo_field_${{ matrix.curve }}.a
|
||||
retention-days: 1
|
||||
|
||||
test-linux:
|
||||
name: Test on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: [check-changed-files, build-linux]
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Setup go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.20.0'
|
||||
- name: Download ICICLE lib artifacts
|
||||
uses: actions/download-artifact@v4
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
with:
|
||||
path: ./icicle/build/src
|
||||
merge-multiple: true
|
||||
- name: Run Tests
|
||||
working-directory: ./wrappers/golang
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# -count ensures the test results are not cached
|
||||
# -p controls the number of programs that can be run in parallel
|
||||
run: |
|
||||
export CPATH=$CPATH:/usr/local/cuda/include
|
||||
go test --tags=g2 ./... -count=1 -failfast -p 2 -timeout 60m
|
||||
|
||||
# TODO: bw6 on windows requires more memory than the standard runner has
|
||||
# Add a large runner and then enable this job
|
||||
# build-windows:
|
||||
# name: Build on Windows
|
||||
# runs-on: windows-2022
|
||||
# needs: [check-changed-files, check-format]
|
||||
# strategy:
|
||||
# matrix:
|
||||
# curve: [bn254, bls12_381, bls12_377, bw6_761]
|
||||
# steps:
|
||||
# - name: Checkout Repo
|
||||
# uses: actions/checkout@v4
|
||||
# - name: Setup go
|
||||
# uses: actions/setup-go@v5
|
||||
# with:
|
||||
# go-version: '1.20.0'
|
||||
# - name: Download and Install Cuda
|
||||
# if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# id: cuda-toolkit
|
||||
# uses: Jimver/cuda-toolkit@v0.2.11
|
||||
# with:
|
||||
# cuda: '12.0.0'
|
||||
# method: 'network'
|
||||
# # https://docs.nvidia.com/cuda/archive/12.0.0/cuda-installation-guide-microsoft-windows/index.html
|
||||
# sub-packages: '["cudart", "nvcc", "thrust", "visual_studio_integration"]'
|
||||
# - name: Build libs
|
||||
# if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# working-directory: ./wrappers/golang
|
||||
# env:
|
||||
# CUDA_PATH: ${{ steps.cuda-toolkit.outputs.CUDA_PATH }}
|
||||
# shell: pwsh
|
||||
# run: ./build.ps1 ${{ matrix.curve }} ON # builds a single curve with G2 enabled
|
||||
104
.github/workflows/main-build.yml
vendored
@@ -1,104 +0,0 @@
|
||||
name: Build
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ARCH_TYPE: native
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
name: Check Changed Files
|
||||
runs-on: ubuntu-22.04
|
||||
outputs:
|
||||
golang: ${{ steps.changed_files.outputs.golang }}
|
||||
rust: ${{ steps.changed_files.outputs.rust }}
|
||||
cpp_cuda: ${{ steps.changed_files.outputs.cpp_cuda }}
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Get all changed files
|
||||
id: changed-files-yaml
|
||||
uses: tj-actions/changed-files@v39
|
||||
# https://github.com/tj-actions/changed-files#input_files_yaml_from_source_file
|
||||
with:
|
||||
files_yaml_from_source_file: .github/changed-files.yml
|
||||
- name: Run Changed Files script
|
||||
id: changed_files
|
||||
# https://github.com/tj-actions/changed-files#outputs-
|
||||
run: |
|
||||
echo "golang=${{ steps.changed-files-yaml.outputs.golang_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
echo "rust=${{ steps.changed-files-yaml.outputs.rust_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
echo "cpp_cuda=${{ steps.changed-files-yaml.outputs.cpp_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
build-rust-linux:
|
||||
name: Build Rust on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Build Rust
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: cargo build --release --verbose
|
||||
|
||||
build-rust-windows:
|
||||
name: Build Rust on Windows
|
||||
runs-on: windows-2022
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Download and Install Cuda
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
uses: Jimver/cuda-toolkit@v0.2.11
|
||||
with:
|
||||
cuda: '12.0.0'
|
||||
method: 'network'
|
||||
# https://docs.nvidia.com/cuda/archive/12.0.0/cuda-installation-guide-microsoft-windows/index.html
|
||||
sub-packages: '["cudart", "nvcc", "thrust", "visual_studio_integration"]'
|
||||
- name: Build Rust Targets
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
env:
|
||||
CUDA_PATH: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}
|
||||
run: cargo build --release --verbose
|
||||
|
||||
build-golang-linux:
|
||||
name: Build Golang on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Build CUDA libs
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: make all
|
||||
working-directory: ./goicicle
|
||||
|
||||
# TODO: Add once Golang make file supports building for Windows
|
||||
# build-golang-windows:
|
||||
# name: Build Golang on Windows
|
||||
# runs-on: windows-2022
|
||||
# needs: check-changed-files
|
||||
# steps:
|
||||
# - name: Checkout Repo
|
||||
# uses: actions/checkout@v3
|
||||
# - name: Download and Install Cuda
|
||||
# if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# uses: Jimver/cuda-toolkit@v0.2.11
|
||||
# with:
|
||||
# cuda: '12.0.0'
|
||||
# method: 'network'
|
||||
# # https://docs.nvidia.com/cuda/archive/12.0.0/cuda-installation-guide-microsoft-windows/index.html
|
||||
# sub-packages: '["cudart", "nvcc", "thrust"]'
|
||||
# - name: Build cpp libs
|
||||
# if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# run: make all
|
||||
# working-directory: ./goicicle
|
||||
41
.github/workflows/main-format.yml
vendored
@@ -1,41 +0,0 @@
|
||||
name: Format
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
formatting-rust:
|
||||
name: Check Rust Code Formatting
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Check rustfmt
|
||||
run: if [[ $(cargo fmt --check) ]]; then echo "Please run cargo fmt"; exit 1; fi
|
||||
# - name: Check clippy
|
||||
# run: cargo clippy --no-deps --all-features --all-targets
|
||||
|
||||
formatting-golang:
|
||||
name: Check Golang Code Formatting
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Check gofmt
|
||||
run: if [[ $(go list ./... | xargs go fmt) ]]; then echo "Please run go fmt"; exit 1; fi
|
||||
|
||||
formatting-cpp-cuda:
|
||||
name: Check C++/CUDA Code Formatting
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Check clang-format
|
||||
run: unformatted_files=$(find ./ -path ./icicle/build -prune -o -path ./target -prune -iname *.h -or -iname *.cuh -or -iname *.cu -or -iname *.c -or -iname *.cpp | xargs clang-format --dry-run -ferror-limit=1 -style=file >&2); if [[ $unformatted_files ]]; then echo $unformatted_files; echo "Please run clang-format"; exit 1; fi
|
||||
|
||||
89
.github/workflows/main-test.yml
vendored
@@ -1,89 +0,0 @@
|
||||
name: Test
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ARCH_TYPE: native
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
name: Check Changed Files
|
||||
runs-on: ubuntu-22.04
|
||||
outputs:
|
||||
golang: ${{ steps.changed_files.outputs.golang }}
|
||||
rust: ${{ steps.changed_files.outputs.rust }}
|
||||
cpp_cuda: ${{ steps.changed_files.outputs.cpp_cuda }}
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Get all changed files
|
||||
id: changed-files-yaml
|
||||
uses: tj-actions/changed-files@v39
|
||||
# https://github.com/tj-actions/changed-files#input_files_yaml_from_source_file
|
||||
with:
|
||||
files_yaml_from_source_file: .github/changed-files.yml
|
||||
- name: Run Changed Files script
|
||||
id: changed_files
|
||||
# https://github.com/tj-actions/changed-files#outputs-
|
||||
run: |
|
||||
echo "golang=${{ steps.changed-files-yaml.outputs.golang_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
echo "rust=${{ steps.changed-files-yaml.outputs.rust_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
echo "cpp_cuda=${{ steps.changed-files-yaml.outputs.cpp_any_modified }}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
test-rust-linux:
|
||||
name: Test Rust on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Run Rust Tests
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: cargo test --release --verbose -- --test-threads=1
|
||||
|
||||
test-cpp-linux:
|
||||
name: Test C++ on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Build C++
|
||||
working-directory: ./icicle
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: |
|
||||
mkdir -p build
|
||||
cmake -DBUILD_TESTS=ON -S . -B build
|
||||
cmake --build build
|
||||
- name: Run C++ Tests
|
||||
working-directory: ./icicle/build
|
||||
if: needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: ctest
|
||||
|
||||
test-golang-linux:
|
||||
name: Test Golang on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Build CUDA libs
|
||||
working-directory: ./goicicle
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: make libbn254.so
|
||||
- name: Run Golang Tests
|
||||
if: needs.check-changed-files.outputs.golang == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: |
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$(pwd)/goicicle
|
||||
go test ./goicicle/curves/bn254 -count=1
|
||||
# TODO: Fix tests for bls12377
|
||||
# TODO: Fix tests for bls12381
|
||||
# run: go test ./goicicle/curves/bn254 ./goicicle/curves/bls12377 ./goicicle/curves/bls12381 -count=1
|
||||
50
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: Release
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
releaseType:
|
||||
description: 'Release type'
|
||||
required: true
|
||||
default: 'minor'
|
||||
type: choice
|
||||
options:
|
||||
- patch
|
||||
- minor
|
||||
- major
|
||||
|
||||
jobs:
|
||||
release:
|
||||
name: Release
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: ${{ secrets.DEPLOY_KEY }}
|
||||
- name: Setup Cache
|
||||
id: cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
~/.cargo/bin/
|
||||
~/.cargo/registry/index/
|
||||
~/.cargo/registry/cache/
|
||||
~/.cargo/git/db/
|
||||
key: ${{ runner.os }}-cargo-${{ hashFiles('~/.cargo/bin/cargo-workspaces') }}
|
||||
- name: Install cargo-workspaces
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
run: cargo install cargo-workspaces
|
||||
- name: Bump rust crate versions, commit, and tag
|
||||
working-directory: wrappers/rust
|
||||
# https://github.com/pksunkara/cargo-workspaces?tab=readme-ov-file#version
|
||||
run: |
|
||||
git config user.name release-bot
|
||||
git config user.email release-bot@ingonyama.com
|
||||
cargo workspaces version ${{ inputs.releaseType }} -y --no-individual-tags -m "Bump rust crates' version"
|
||||
- name: Create draft release
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
LATEST_TAG=$(git describe --tags --abbrev=0)
|
||||
gh release create $LATEST_TAG --generate-notes -d --verify-tag -t "Release $LATEST_TAG"
|
||||
91
.github/workflows/rust.yml
vendored
Normal file
@@ -0,0 +1,91 @@
|
||||
name: Rust
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- V2
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check-changed-files:
|
||||
uses: ./.github/workflows/check-changed-files.yml
|
||||
|
||||
check-format:
|
||||
name: Check Code Format
|
||||
runs-on: ubuntu-22.04
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Check rustfmt
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
working-directory: ./wrappers/rust
|
||||
# "-name target -prune" removes searching in any directory named "target"
|
||||
# Formatting by single file is necessary due to generated files not being present
|
||||
# before building the project.
|
||||
# e.g. icicle-cuda-runtime/src/bindings.rs is generated and icicle-cuda-runtime/src/lib.rs includes that module
|
||||
# causing rustfmt to fail.
|
||||
run: if [[ $(find . -path ./icicle-curves/icicle-curve-template -prune -o -name target -prune -o -iname *.rs -print | xargs cargo fmt --check --) ]]; then echo "Please run cargo fmt"; exit 1; fi
|
||||
|
||||
build-linux:
|
||||
name: Build on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: [check-changed-files, check-format]
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Build
|
||||
working-directory: ./wrappers/rust
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# Building from the root workspace will build all members of the workspace by default
|
||||
run: cargo build --release --verbose
|
||||
|
||||
test-linux:
|
||||
name: Test on Linux
|
||||
runs-on: [self-hosted, Linux, X64, icicle]
|
||||
needs: [check-changed-files, build-linux]
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Run tests
|
||||
working-directory: ./wrappers/rust
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
# Running tests from the root workspace will run all workspace members' tests by default
|
||||
# We need to limit the number of threads to avoid running out of memory on weaker machines
|
||||
run: cargo test --workspace --exclude icicle-babybear --release --verbose --features=g2 -- --test-threads=2
|
||||
- name: Run baby bear tests
|
||||
working-directory: ./wrappers/rust/icicle-fields/icicle-babybear
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
run: cargo test --release --verbose
|
||||
|
||||
build-windows:
|
||||
name: Build on Windows
|
||||
runs-on: windows-2022
|
||||
needs: check-changed-files
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
- name: Download and Install Cuda
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
id: cuda-toolkit
|
||||
uses: Jimver/cuda-toolkit@v0.2.11
|
||||
with:
|
||||
cuda: '12.0.0'
|
||||
method: 'network'
|
||||
# https://docs.nvidia.com/cuda/archive/12.0.0/cuda-installation-guide-microsoft-windows/index.html
|
||||
sub-packages: '["cudart", "nvcc", "thrust", "visual_studio_integration"]'
|
||||
- name: Build targets
|
||||
working-directory: ./wrappers/rust
|
||||
if: needs.check-changed-files.outputs.rust == 'true' || needs.check-changed-files.outputs.cpp_cuda == 'true'
|
||||
env:
|
||||
CUDA_PATH: ${{ steps.cuda-toolkit.outputs.CUDA_PATH }}
|
||||
# Building from the root workspace will build all members of the workspace by default
|
||||
run: cargo build --release --verbose
|
||||
29
.github/workflows/test-deploy-docs.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: Test Deploy to GitHub Pages
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'docs/*'
|
||||
|
||||
jobs:
|
||||
test-deploy:
|
||||
name: Test deployment of docs website
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
path: 'repo'
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18
|
||||
cache: npm
|
||||
cache-dependency-path: ./repo/docs/package-lock.json
|
||||
|
||||
- name: Install dependencies
|
||||
run: npm install --frozen-lockfile
|
||||
working-directory: ./repo/docs
|
||||
- name: Test build website
|
||||
run: npm run build
|
||||
working-directory: ./repo/docs
|
||||
4
.gitignore
vendored
@@ -15,3 +15,7 @@
|
||||
**/.DS_Store
|
||||
**/Cargo.lock
|
||||
**/icicle/build/
|
||||
**/wrappers/rust/icicle-cuda-runtime/src/bindings.rs
|
||||
**/build*
|
||||
**/icicle/appUtils/large_ntt/work
|
||||
icicle/appUtils/large_ntt/work/test_ntt
|
||||
|
||||
@@ -2,7 +2,7 @@ cff-version: 1.2.0
|
||||
message: "If you use this software, please cite it as below."
|
||||
authors:
|
||||
- family-names: "Ingonyama"
|
||||
title: "Icicle: GPU Library for ZK Acceleration"
|
||||
version: 0.1.0
|
||||
date-released: 2023-03-08
|
||||
title: "ICICLE: GPU Library for ZK Acceleration"
|
||||
version: 1.0.0
|
||||
date-released: 2024-01-04
|
||||
url: "https://github.com/ingonyama-zk/icicle"
|
||||
|
||||
50
Cargo.toml
@@ -1,50 +0,0 @@
|
||||
[package]
|
||||
name = "icicle"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
authors = [ "Ingonyama" ]
|
||||
description = "An implementation of the Ingonyama CUDA Library"
|
||||
homepage = "https://www.ingonyama.com"
|
||||
repository = "https://github.com/ingonyama-zk/icicle"
|
||||
|
||||
[[bench]]
|
||||
name = "ntt"
|
||||
path = "benches/ntt.rs"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "msm"
|
||||
path = "benches/msm.rs"
|
||||
harness = false
|
||||
|
||||
[dependencies]
|
||||
hex = "*"
|
||||
ark-std = "0.3.0"
|
||||
ark-ff = "0.3.0"
|
||||
ark-poly = "0.3.0"
|
||||
ark-ec = { version = "0.3.0", features = [ "parallel" ] }
|
||||
ark-bls12-381 = "0.3.0"
|
||||
ark-bls12-377 = "0.3.0"
|
||||
ark-bn254 = "0.3.0"
|
||||
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_derive = "1.0"
|
||||
serde_cbor = "0.11.2"
|
||||
|
||||
rustacuda = "0.1"
|
||||
rustacuda_core = "0.1"
|
||||
rustacuda_derive = "0.1"
|
||||
|
||||
rand = "0.8.5" #TODO: move rand and ark dependencies to dev once random scalar/point generation is done "natively"
|
||||
|
||||
[build-dependencies]
|
||||
cc = { version = "1.0", features = ["parallel"] }
|
||||
cmake = "0.1.50"
|
||||
|
||||
[dev-dependencies]
|
||||
"criterion" = "0.4.0"
|
||||
|
||||
[features]
|
||||
default = ["bls12_381"]
|
||||
bls12_381 = ["ark-bls12-381/curve"]
|
||||
g2 = []
|
||||
@@ -15,7 +15,7 @@ ENV PATH="/root/.cargo/bin:${PATH}"
|
||||
|
||||
# Install Golang
|
||||
ENV GOLANG_VERSION 1.21.1
|
||||
RUN curl -L https://golang.org/dl/go${GOLANG_VERSION}.linux-amd64.tar.gz | tar -xz -C /usr/local
|
||||
RUN curl -L https://go.dev/dl/go${GOLANG_VERSION}.linux-amd64.tar.gz | tar -xz -C /usr/local
|
||||
ENV PATH="/usr/local/go/bin:${PATH}"
|
||||
|
||||
# Set the working directory in the container
|
||||
|
||||
244
README.md
@@ -1,193 +1,84 @@
|
||||
# ICICLE
|
||||
**<div align="center">Icicle is a library for ZK acceleration using CUDA-enabled GPUs.</div>**
|
||||
|
||||
|
||||

|
||||
|
||||
<div align="center">ICICLE is a library for ZK acceleration using CUDA-enabled GPUs.</div>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://github.com/ingonyama-zk/icicle/actions/workflows/main-build.yml/badge.svg" alt="Build status">
|
||||
<img alt="ICICLE" width="300" height="300" src="https://user-images.githubusercontent.com/2446179/223707486-ed8eb5ab-0616-4601-8557-12050df8ccf7.png"/>
|
||||
</p>
|
||||
<p align="center">
|
||||
<a href="https://discord.gg/EVVXTdt6DF">
|
||||
<img src="https://img.shields.io/discord/1063033227788423299?logo=discord" alt="Chat with us on Discord">
|
||||
</a>
|
||||
<a href="https://twitter.com/intent/follow?screen_name=Ingo_zk">
|
||||
<img src="https://img.shields.io/twitter/follow/Ingo_zk?style=social&logo=twitter" alt="Follow us on Twitter">
|
||||
<a href="https://github.com/ingonyama-zk/icicle/releases">
|
||||
<img src="https://img.shields.io/github/v/release/ingonyama-zk/icicle" alt="GitHub Release">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
|
||||
## Background
|
||||
|
||||
Zero Knowledge Proofs (ZKPs) are considered one of the greatest achievements of modern cryptography. Accordingly, ZKPs are expected to disrupt a number of industries and will usher in an era of trustless and privacy preserving services and infrastructure.
|
||||
|
||||
If we want ZK hardware today we have FPGAs or GPUs which are relatively inexpensive. However, the biggest selling point of GPUs is the software; we talk in particular about CUDA, which makes it easy to write code running on Nvidia GPUs, taking advantage of their highly parallel architecture. Together with the widespread availability of these devices, if we can get GPUs to work on ZK workloads, then we have made a giant step towards accessible and efficient ZK provers.
|
||||
We believe GPUs are as important for ZK as for AI.
|
||||
|
||||
## Zero Knowledge on GPU
|
||||
- GPUs are a perfect match for ZK compute - around 97% of ZK protocol runtime is parallel by nature.
|
||||
- GPUs are simple for developers to use and scale compared to other hardware platforms.
|
||||
- GPUs are extremely competitive in terms of power / performance and price (3x cheaper).
|
||||
- GPUs are popular and readily available.
|
||||
|
||||
ICICLE is a CUDA implementation of general functions widely used in ZKP. ICICLE currently provides support for MSM, NTT, and ECNTT, with plans to support Hash functions soon.
|
||||
## Getting Started
|
||||
|
||||
### Supported primitives
|
||||
ICICLE is a CUDA implementation of general functions widely used in ZKP.
|
||||
|
||||
- Fields
|
||||
- Scalars
|
||||
- Points
|
||||
- Projective: {x, y, z}
|
||||
- Affine: {x, y}
|
||||
- Curves
|
||||
- [BLS12-381]
|
||||
- [BLS12-377]
|
||||
- [BN254]
|
||||
- [BW6-671]
|
||||
|
||||
## Build and usage
|
||||
> [!NOTE]
|
||||
> Developers: We highly recommend reading our [documentation]
|
||||
|
||||
> [!TIP]
|
||||
> Try out ICICLE by running some [examples] using ICICLE in C++ and our Rust bindings
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- [NVCC] (version 12.0 or newer)
|
||||
- cmake 3.18 and above
|
||||
- follow [these instructions](https://github.com/ingonyama-zk/icicle/tree/main/icicle#prerequisites-on-ubuntu)
|
||||
- Any Nvidia GPU
|
||||
- [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) version 12.0 or newer.
|
||||
- [CMake]((https://cmake.org/files/)), version 3.18 and above. Latest version is recommended.
|
||||
- [GCC](https://gcc.gnu.org/install/download.html) version 9, latest version is recommended.
|
||||
- Any Nvidia GPU (which supports CUDA Toolkit version 12.0 or above).
|
||||
|
||||
If you don't have access to a Nvidia GPU check out [google-colab](#google-colab). If you require more compute power and are looking to build or do research with ICICLE refer to our [grant program][GRANT_PROGRAM].
|
||||
> [!NOTE]
|
||||
> It is possible to use CUDA 11 for cards which don't support CUDA 12, however we don't officially support this version and in the future there may be issues.
|
||||
|
||||
### Accessing Hardware
|
||||
|
||||
If you don't have access to an Nvidia GPU we have some options for you.
|
||||
|
||||
Checkout [Google Colab](https://colab.google/). Google Colab offers a free [T4 GPU](https://www.nvidia.com/en-us/data-center/tesla-t4/) instance and ICICLE can be used with it, reference this guide for setting up your [Google Colab workplace][GOOGLE-COLAB-ICICLE].
|
||||
|
||||
If you require more compute and have an interesting research project, we have [bounty and grant programs][GRANT_PROGRAM].
|
||||
|
||||
|
||||
### Steps
|
||||
### Build systems
|
||||
|
||||
1. Define or select a curve for your application; we've provided a [template][CRV_TEMPLATE] for defining a curve
|
||||
2. Include the curve in [`curve_config.cuh`][CRV_CONFIG]
|
||||
3. Now you can build the ICICLE library using nvcc
|
||||
ICICLE has three build systems.
|
||||
|
||||
```sh
|
||||
mkdir -p build
|
||||
nvcc -o build/<binary_name> ./icicle/curves/index.cu -lib -arch=native
|
||||
```
|
||||
- [ICICLE core][ICICLE-CORE], C++ and CUDA
|
||||
- [ICICLE Rust][ICICLE-RUST] bindings, requires [Rust](https://www.rust-lang.org/) version 1.70 and above
|
||||
- [ICICLE Golang][ICICLE-GO] bindings, requires [Go](https://go.dev/) version 1.20 and above
|
||||
|
||||
### Testing the CUDA code
|
||||
ICICLE core always needs to be built as part of the other build systems as it contains the core ICICLE primitives implemented in CUDA. Reference these guides for the different build systems, [ICICLE core guide][ICICLE-CORE-README], [ICICLE Rust guide][ICICLE-RUST-README] and [ICICLE Golang guide][ICICLE-GO-README].
|
||||
|
||||
We are using [googletest] library for testing. To build and run [the test suite](./icicle/README.md) for finite field and elliptic curve arithmetic, run from the `icicle` folder:
|
||||
### Compiling ICICLE
|
||||
|
||||
For testing, ensure the `BUILD_TESTS` option is enabled in cmake. If not, toggle it on by adding `-DBUILD_TESTS=ON` in the cmake configuration command:
|
||||
Running ICICLE via Rust bindings is highly recommended and simple:
|
||||
- Clone this repo
|
||||
- go to our [Rust bindings][ICICLE-RUST]
|
||||
- Enter a [curve](./wrappers/rust/icicle-curves) implementation
|
||||
- run `cargo build --release` to build or `cargo test` to build and execute tests
|
||||
|
||||
```sh
|
||||
cmake -S . -B build -DBUILD_TESTS=ON
|
||||
```
|
||||
|
||||
Proceed with the following commands:
|
||||
|
||||
```sh
|
||||
mkdir -p build
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
cd build && ctest
|
||||
```
|
||||
|
||||
NOTE: If you are using cmake versions < 3.24 add `-DCUDA_ARCH=<target_cumpute_arch>` to the command `cmake -S . -B build`
|
||||
|
||||
|
||||
### Rust Bindings
|
||||
|
||||
For convenience, we also provide rust bindings to the ICICLE library for the following primitives:
|
||||
|
||||
- MSM
|
||||
- NTT
|
||||
- Forward NTT
|
||||
- Inverse NTT
|
||||
- ECNTT
|
||||
- Forward ECNTT
|
||||
- Inverse NTT
|
||||
- Scalar Vector Multiplication
|
||||
- Point Vector Multiplication
|
||||
|
||||
A custom [build script][B_SCRIPT] is used to compile and link the ICICLE library. The environment variable `ARCH_TYPE` is used to determine which GPU type the library should be compiled for and it defaults to `native` when it is not set allowing the compiler to detect the installed GPU type.
|
||||
|
||||
> NOTE: A GPU must be detectable and therefore installed if the `ARCH_TYPE` is not set.
|
||||
|
||||
Once you have your parameters set, run:
|
||||
|
||||
```sh
|
||||
cargo build --release
|
||||
```
|
||||
|
||||
You'll find a release ready library at `target/release/libicicle_utils.rlib`.
|
||||
|
||||
To benchmark and test the functionality available in RUST, run:
|
||||
|
||||
```
|
||||
cargo bench
|
||||
cargo test -- --test-threads=1
|
||||
```
|
||||
|
||||
The flag `--test-threads=1` is needed because currently some tests might interfere with one another inside the GPU.
|
||||
|
||||
### Example Usage
|
||||
|
||||
An example of using the Rust bindings library can be found in our [fast-danksharding implementation][FDI]
|
||||
|
||||
### Supporting Additional Curves
|
||||
|
||||
Supporting additional curves can be done as follows:
|
||||
|
||||
Create a JSON file with the curve parameters. The curve is defined by the following parameters:
|
||||
- ``curve_name`` - e.g. ``bls12_381``.
|
||||
- ``modulus_p`` - scalar field modulus (in decimal).
|
||||
- ``bit_count_p`` - number of bits needed to represent `` modulus_p`` .
|
||||
- ``limb_p`` - number of (32-bit) limbs needed to represent `` modulus_p`` (rounded up).
|
||||
- ``ntt_size`` - log of the maximal size subgroup of the scalar field.
|
||||
- ``modulus_q`` - base field modulus (in decimal).
|
||||
- ``bit_count_q`` - number of bits needed to represent `` modulus_q`` .
|
||||
- ``limb_q`` - number of (32-bit) limbs needed to represent `` modulus_q`` (rounded up).
|
||||
- ``weierstrass_b`` - `b` of the curve in Weierstrauss form.
|
||||
- ``weierstrass_b_g2_re`` - real part of the `b` value in of the g2 curve in Weierstrass form.
|
||||
- ``weierstrass_b_g2_im`` - imaginary part of the `b` value in of the g2 curve in Weierstrass form.
|
||||
- ``gen_x`` - `x` coordinate of a generator element for the curve.
|
||||
- ``gen_y`` - `y` coordinate of a generator element for the curve.
|
||||
- ``gen_x_re`` - real part of the `x` coordinate of generator element for the g2 curve.
|
||||
- ``gen_x_im`` - imaginary part of the `x` coordinate of generator element for the g2 curve.
|
||||
- ``gen_y_re`` - real part of the `y` coordinate of generator element for the g2 curve.
|
||||
- ``gen_y_im`` - imaginary part of the `y` coordinate of generator element for the g2 curve.
|
||||
- ``nonresidue`` - nonresidue, or `i^2`, or `u^2` - square of the element that generates quadratic extension field of the base field.
|
||||
|
||||
Here's an example for BLS12-381.
|
||||
```
|
||||
{
|
||||
"curve_name" : "bls12_381",
|
||||
"modulus_p" : 52435875175126190479447740508185965837690552500527637822603658699938581184513,
|
||||
"bit_count_p" : 255,
|
||||
"limb_p" : 8,
|
||||
"ntt_size" : 32,
|
||||
"modulus_q" : 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787,
|
||||
"bit_count_q" : 381,
|
||||
"limb_q" : 12,
|
||||
"weierstrass_b" : 4,
|
||||
"weierstrass_b_g2_re" : 4,
|
||||
"weierstrass_b_g2_im" : 4,
|
||||
"gen_x" : 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,
|
||||
"gen_y" : 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569,
|
||||
"gen_x_re" : 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160,
|
||||
"gen_x_im" : 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758,
|
||||
"gen_y_re" : 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905,
|
||||
"gen_y_im" : 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582,
|
||||
"nonresidue" : -1
|
||||
}
|
||||
```
|
||||
|
||||
Save the parameters JSON file under the ``curve_parameters`` directory.
|
||||
|
||||
Then run the Python script ``new_curve_script.py `` from the root folder:
|
||||
|
||||
```
|
||||
python3 ./curve_parameters/new_curve_script.py ./curve_parameters/bls12_381.json
|
||||
```
|
||||
|
||||
The script does the following:
|
||||
- Creates a folder in ``icicle/curves`` with the curve name, which contains all of the files needed for the supported operations in cuda.
|
||||
- Adds the curve's exported operations to ``icicle/curves/index.cu``.
|
||||
- Creates a file with the curve name in ``src/curves`` with the relevant objects for the curve.
|
||||
- Creates a test file with the curve name in ``src``.
|
||||
|
||||
Also files from ``./icicle/curves/<curve_name>/supported_operations.cu`` should be added individually to ``add_library`` section of [``./icicle/CMakeLists.txt``][CMAKELISTS]
|
||||
|
||||
Testing the new curve could be done by running the tests in ``tests_curve_name`` (e.g. ``tests_bls12_381``).
|
||||
In any case you would want to compile and run core icicle c++ tests, just follow these setps:
|
||||
- Clone this repo
|
||||
- go to [ICICLE core][ICICLE-CORE]
|
||||
- execute the small [script](https://github.com/ingonyama-zk/icicle/tree/main/icicle#running-tests) to compile via cmake and run c++ and cuda tests
|
||||
|
||||
## Docker
|
||||
|
||||
@@ -198,14 +89,6 @@ docker build -t <name_of_your_choice> .
|
||||
docker run --gpus all -it <name_of_your_choice> /bin/bash
|
||||
```
|
||||
|
||||
## Google Colab
|
||||
|
||||
[Colab](https://colab.google/) is a hosted Jupyter Notebook service that requires no setup to use and provides free access to computing resources including GPUS!
|
||||
|
||||
You can easily run ICICLE in Google Colab on a free GPU instance, this is a great option for those who want to get started with ICICLE instantly without any local setup or GPU.
|
||||
|
||||
Follow this [guide][GOOGLE_COLAB_ICICLE] for more details.
|
||||
|
||||
## Contributions
|
||||
|
||||
Join our [Discord Server][DISCORD] and find us on the icicle channel. We will be happy to work together to support your use case and talk features, bugs and design.
|
||||
@@ -224,13 +107,18 @@ In case `clang-format` is missing on your system, you can install it using the
|
||||
sudo apt install clang-format
|
||||
```
|
||||
|
||||
You will also need to install [codespell](https://github.com/codespell-project/codespell?tab=readme-ov-file#installation) to check for typos.
|
||||
|
||||
This will ensure our custom hooks are run and will make it easier to follow our coding guidelines.
|
||||
|
||||
### Hall of Fame
|
||||
|
||||
- [Robik](https://github.com/robik75), for his ongoing support and mentorship
|
||||
- [liuxiao](https://github.com/liuxiaobleach), for being a top notch bug smasher
|
||||
- [gkigiermo](https://github.com/gkigiermo), for making it intuitive to use ICICLE in Google Colab.
|
||||
- [gkigiermo](https://github.com/gkigiermo), for making it intuitive to use ICICLE in Google Colab
|
||||
- [nonam3e](https://github.com/nonam3e), for adding Grumpkin curve support into ICICLE
|
||||
- [alxiong](https://github.com/alxiong), for adding warmup for CudaStream
|
||||
- [cyl19970726](https://github.com/cyl19970726), for updating go install source in Dockerfile
|
||||
|
||||
## Help & Support
|
||||
|
||||
@@ -244,22 +132,26 @@ ICICLE is distributed under the terms of the MIT License.
|
||||
See [LICENSE-MIT][LMIT] for details.
|
||||
|
||||
<!-- Begin Links -->
|
||||
[BLS12-381]: ./icicle/curves/bls12_381/supported_operations.cu
|
||||
[BLS12-377]: ./icicle/curves/bls12_377/supported_operations.cu
|
||||
[BN254]: ./icicle/curves/bn254/supported_operations.cu
|
||||
[BW6-671]: ./icicle/curves/bw6_671/supported_operations.cu
|
||||
[BLS12-381]: ./icicle/curves/
|
||||
[BLS12-377]: ./icicle/curves/
|
||||
[BN254]: ./icicle/curves/
|
||||
[BW6-671]: ./icicle/curves/
|
||||
[NVCC]: https://docs.nvidia.com/cuda/#installation-guides
|
||||
[CRV_TEMPLATE]: ./icicle/curves/curve_template/
|
||||
[CRV_CONFIG]: ./icicle/curves/index.cu
|
||||
[B_SCRIPT]: ./build.rs
|
||||
[FDI]: https://github.com/ingonyama-zk/fast-danksharding
|
||||
[LMIT]: ./LICENSE
|
||||
[DISCORD]: https://discord.gg/Y4SkbDf2Ff
|
||||
[googletest]: https://github.com/google/googletest/
|
||||
[HOOKS_DOCS]: https://git-scm.com/docs/githooks
|
||||
[HOOKS_PATH]: ./scripts/hooks/
|
||||
[CMAKELISTS]: https://github.com/ingonyama-zk/icicle/blob/f0e6b465611227b858ec4590f4de5432e892748d/icicle/CMakeLists.txt#L28
|
||||
[GOOGLE_COLAB_ICICLE]: https://github.com/gkigiermo/rust-cuda-colab
|
||||
[GRANT_PROGRAM]: https://docs.google.com/forms/d/e/1FAIpQLSc967TnNwxZZ4akejcSi4KOUmGrEc68ZZV-FHLfo8KnP1wbpg/viewform
|
||||
[GOOGLE-COLAB-ICICLE]: https://dev.ingonyama.com/icicle/colab-instructions
|
||||
[GRANT_PROGRAM]: https://medium.com/@ingonyama/icicle-for-researchers-grants-challenges-9be1f040998e
|
||||
[ICICLE-CORE]: ./icicle/
|
||||
[ICICLE-RUST]: ./wrappers/rust/
|
||||
[ICICLE-GO]: ./wrappers/golang/
|
||||
[ICICLE-CORE-README]: ./icicle/README.md
|
||||
[ICICLE-RUST-README]: ./wrappers/rust/README.md
|
||||
[ICICLE-GO-README]: ./wrappers/golang/README.md
|
||||
[documentation]: https://dev.ingonyama.com/icicle/overview
|
||||
[examples]: ./examples/
|
||||
|
||||
<!-- End Links -->
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
extern crate criterion;
|
||||
|
||||
use criterion::{criterion_group, criterion_main, Criterion};
|
||||
|
||||
use icicle::test_bls12_381::{commit_batch_bls12_381, generate_random_points_bls12_381, set_up_scalars_bls12_381};
|
||||
use icicle::utils::*;
|
||||
#[cfg(feature = "g2")]
|
||||
use icicle::{commit_batch_g2, field::ExtensionField};
|
||||
|
||||
use rustacuda::prelude::*;
|
||||
|
||||
const LOG_MSM_SIZES: [usize; 1] = [12];
|
||||
const BATCH_SIZES: [usize; 2] = [128, 256];
|
||||
|
||||
fn bench_msm(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group("MSM");
|
||||
for log_msm_size in LOG_MSM_SIZES {
|
||||
for batch_size in BATCH_SIZES {
|
||||
let msm_size = 1 << log_msm_size;
|
||||
let (scalars, _, _) = set_up_scalars_bls12_381(msm_size, 0, false);
|
||||
let batch_scalars = vec![scalars; batch_size].concat();
|
||||
let mut d_scalars = DeviceBuffer::from_slice(&batch_scalars[..]).unwrap();
|
||||
|
||||
let points = generate_random_points_bls12_381(msm_size, get_rng(None));
|
||||
let batch_points = vec![points; batch_size].concat();
|
||||
let mut d_points = DeviceBuffer::from_slice(&batch_points[..]).unwrap();
|
||||
|
||||
#[cfg(feature = "g2")]
|
||||
let g2_points = generate_random_points::<ExtensionField>(msm_size, get_rng(None));
|
||||
#[cfg(feature = "g2")]
|
||||
let g2_batch_points = vec![g2_points; batch_size].concat();
|
||||
#[cfg(feature = "g2")]
|
||||
let mut d_g2_points = DeviceBuffer::from_slice(&g2_batch_points[..]).unwrap();
|
||||
|
||||
group
|
||||
.sample_size(30)
|
||||
.bench_function(
|
||||
&format!("MSM of size 2^{} in batch {}", log_msm_size, batch_size),
|
||||
|b| b.iter(|| commit_batch_bls12_381(&mut d_points, &mut d_scalars, batch_size)),
|
||||
);
|
||||
|
||||
#[cfg(feature = "g2")]
|
||||
group
|
||||
.sample_size(10)
|
||||
.bench_function(
|
||||
&format!("G2 MSM of size 2^{} in batch {}", log_msm_size, batch_size),
|
||||
|b| b.iter(|| commit_batch_g2(&mut d_g2_points, &mut d_scalars, batch_size)),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(msm_benches, bench_msm);
|
||||
criterion_main!(msm_benches);
|
||||
@@ -1,85 +0,0 @@
|
||||
extern crate criterion;
|
||||
|
||||
use criterion::{criterion_group, criterion_main, Criterion};
|
||||
|
||||
use icicle::test_bls12_381::*;
|
||||
|
||||
const LOG_NTT_SIZES: [usize; 3] = [20, 9, 10];
|
||||
const BATCH_SIZES: [usize; 3] = [1, 512, 1024];
|
||||
|
||||
fn bench_ntt(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group("NTT");
|
||||
for log_ntt_size in LOG_NTT_SIZES {
|
||||
for batch_size in BATCH_SIZES {
|
||||
let ntt_size = 1 << log_ntt_size;
|
||||
|
||||
if ntt_size * batch_size > 1 << 25 {
|
||||
continue;
|
||||
}
|
||||
|
||||
let scalar_samples = 20;
|
||||
|
||||
let (_, mut d_evals, mut d_domain) = set_up_scalars_bls12_381(ntt_size * batch_size, log_ntt_size, true);
|
||||
|
||||
group
|
||||
.sample_size(scalar_samples)
|
||||
.bench_function(
|
||||
&format!("Scalar NTT of size 2^{} in batch {}", log_ntt_size, batch_size),
|
||||
|b| b.iter(|| evaluate_scalars_batch_bls12_381(&mut d_evals, &mut d_domain, batch_size)),
|
||||
);
|
||||
|
||||
group
|
||||
.sample_size(scalar_samples)
|
||||
.bench_function(
|
||||
&format!("Scalar iNTT of size 2^{} in batch {}", log_ntt_size, batch_size),
|
||||
|b| b.iter(|| interpolate_scalars_batch_bls12_381(&mut d_evals, &mut d_domain, batch_size)),
|
||||
);
|
||||
|
||||
group
|
||||
.sample_size(scalar_samples)
|
||||
.bench_function(
|
||||
&format!("Scalar inplace NTT of size 2^{} in batch {}", log_ntt_size, batch_size),
|
||||
|b| b.iter(|| ntt_inplace_batch_bls12_381(&mut d_evals, &mut d_domain, batch_size, false, 0)),
|
||||
);
|
||||
|
||||
group
|
||||
.sample_size(scalar_samples)
|
||||
.bench_function(
|
||||
&format!("Scalar inplace iNTT of size 2^{} in batch {}", log_ntt_size, batch_size),
|
||||
|b| b.iter(|| ntt_inplace_batch_bls12_381(&mut d_evals, &mut d_domain, batch_size, true, 0)),
|
||||
);
|
||||
|
||||
drop(d_evals);
|
||||
drop(d_domain);
|
||||
|
||||
if ntt_size * batch_size > 1 << 18 {
|
||||
continue;
|
||||
}
|
||||
|
||||
let point_samples = 10;
|
||||
|
||||
let (_, mut d_points_evals, mut d_domain) =
|
||||
set_up_points_bls12_381(ntt_size * batch_size, log_ntt_size, true);
|
||||
|
||||
group
|
||||
.sample_size(point_samples)
|
||||
.bench_function(
|
||||
&format!("EC NTT of size 2^{} in batch {}", log_ntt_size, batch_size),
|
||||
|b| b.iter(|| interpolate_points_batch_bls12_381(&mut d_points_evals, &mut d_domain, batch_size)),
|
||||
);
|
||||
|
||||
group
|
||||
.sample_size(point_samples)
|
||||
.bench_function(
|
||||
&format!("EC iNTT of size 2^{} in batch {}", log_ntt_size, batch_size),
|
||||
|b| b.iter(|| evaluate_points_batch_bls12_381(&mut d_points_evals, &mut d_domain, batch_size)),
|
||||
);
|
||||
|
||||
drop(d_points_evals);
|
||||
drop(d_domain);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(ntt_benches, bench_ntt);
|
||||
criterion_main!(ntt_benches);
|
||||
53
build.rs
@@ -1,53 +0,0 @@
|
||||
use std::env::{self, var};
|
||||
|
||||
use cmake::Config;
|
||||
|
||||
fn main() {
|
||||
let cargo_dir = var("CARGO_MANIFEST_DIR").unwrap();
|
||||
let profile = var("PROFILE").unwrap();
|
||||
|
||||
let target_output_dir = format!("{}/target/{}", cargo_dir, profile);
|
||||
let build_output_dir = format!("{}/build", target_output_dir);
|
||||
|
||||
println!("cargo:rerun-if-env-changed=CXXFLAGS");
|
||||
println!("cargo:rerun-if-changed=./icicle");
|
||||
println!("cargo:rerun-if-changed=./target/{}", profile); // without this it ignores manual changes to build folder
|
||||
|
||||
let mut cmake = Config::new("./icicle");
|
||||
cmake
|
||||
.define("BUILD_TESTS", "OFF")
|
||||
.out_dir(&target_output_dir)
|
||||
.build_target("icicle");
|
||||
|
||||
let target_profile: &str = if profile == "release" { "Release" } else { "Debug" };
|
||||
|
||||
cmake.define("CMAKE_BUILD_TYPE", target_profile);
|
||||
|
||||
if cfg!(feature = "g2") {
|
||||
cmake.define("G2_DEFINED", "");
|
||||
}
|
||||
|
||||
cmake.build();
|
||||
|
||||
if cfg!(unix) {
|
||||
if let Ok(cuda_path) = var("CUDA_HOME") {
|
||||
println!("cargo:rustc-link-search=native={}/lib64", cuda_path);
|
||||
} else {
|
||||
println!("cargo:rustc-link-search=native=/usr/local/cuda/lib64");
|
||||
}
|
||||
} else if cfg!(windows) {
|
||||
let build_output_dir_cmake = format!("{}/{}", build_output_dir, target_profile);
|
||||
|
||||
println!("cargo:rustc-link-search={}", &build_output_dir_cmake);
|
||||
}
|
||||
|
||||
println!("cargo:rustc-link-search={}", &build_output_dir);
|
||||
println!("cargo:rustc-link-search={}", &target_output_dir);
|
||||
println!("cargo:rustc-link-lib=ingo_icicle");
|
||||
println!("cargo:rustc-link-lib=dylib=cuda");
|
||||
println!("cargo:rustc-link-lib=dylib=cudart");
|
||||
|
||||
if cfg!(unix) {
|
||||
println!("cargo:rustc-link-lib=dylib=stdc++");
|
||||
}
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"curve_name" : "bls12_377",
|
||||
"modulus_p" : 8444461749428370424248824938781546531375899335154063827935233455917409239041,
|
||||
"bit_count_p" : 253,
|
||||
"limb_p" : 8,
|
||||
"ntt_size" : 47,
|
||||
"modulus_q" : 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177,
|
||||
"bit_count_q" : 377,
|
||||
"limb_q" : 12,
|
||||
"root_of_unity" : 8065159656716812877374967518403273466521432693661810619979959746626482506078,
|
||||
"weierstrass_b" : 1,
|
||||
"weierstrass_b_g2_re" : 0,
|
||||
"weierstrass_b_g2_im" : 155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906,
|
||||
"g1_gen_x" : 81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695,
|
||||
"g1_gen_y" : 241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030,
|
||||
"g2_gen_x_re" : 233578398248691099356572568220835526895379068987715365179118596935057653620464273615301663571204657964920925606294,
|
||||
"g2_gen_x_im" : 140913150380207355837477652521042157274541796891053068589147167627541651775299824604154852141315666357241556069118,
|
||||
"g2_gen_y_re" : 63160294768292073209381361943935198908131692476676907196754037919244929611450776219210369229519898517858833747423,
|
||||
"g2_gen_y_im" : 149157405641012693445398062341192467754805999074082136895788947234480009303640899064710353187729182149407503257491,
|
||||
"nonresidue" : -5
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"curve_name" : "bls12_381",
|
||||
"modulus_p" : 52435875175126190479447740508185965837690552500527637822603658699938581184513,
|
||||
"bit_count_p" : 255,
|
||||
"limb_p" : 8,
|
||||
"ntt_size" : 32,
|
||||
"modulus_q" : 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787,
|
||||
"bit_count_q" : 381,
|
||||
"limb_q" : 12,
|
||||
"root_of_unity" : 937917089079007706106976984802249742464848817460758522850752807661925904159,
|
||||
"weierstrass_b" : 4,
|
||||
"weierstrass_b_g2_re":4,
|
||||
"weierstrass_b_g2_im":4,
|
||||
"g1_gen_x" : 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,
|
||||
"g1_gen_y" : 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569,
|
||||
"g2_gen_x_re" : 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160,
|
||||
"g2_gen_x_im" : 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758,
|
||||
"g2_gen_y_re" : 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905,
|
||||
"g2_gen_y_im" : 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582,
|
||||
"nonresidue" : -1
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"curve_name" : "bn254",
|
||||
"modulus_p" : 21888242871839275222246405745257275088548364400416034343698204186575808495617,
|
||||
"bit_count_p" : 254,
|
||||
"limb_p" : 8,
|
||||
"ntt_size" : 28,
|
||||
"modulus_q" : 21888242871839275222246405745257275088696311157297823662689037894645226208583,
|
||||
"bit_count_q" : 254,
|
||||
"limb_q" : 8,
|
||||
"root_of_unity": 19103219067921713944291392827692070036145651957329286315305642004821462161904,
|
||||
"weierstrass_b" : 3,
|
||||
"weierstrass_b_g2_re" : 19485874751759354771024239261021720505790618469301721065564631296452457478373,
|
||||
"weierstrass_b_g2_im" : 266929791119991161246907387137283842545076965332900288569378510910307636690,
|
||||
"g1_gen_x" : 1,
|
||||
"g1_gen_y" : 2,
|
||||
"g2_gen_x_re" : 10857046999023057135944570762232829481370756359578518086990519993285655852781,
|
||||
"g2_gen_x_im" : 11559732032986387107991004021392285783925812861821192530917403151452391805634,
|
||||
"g2_gen_y_re" : 8495653923123431417604973247489272438418190587263600148770280649306958101930,
|
||||
"g2_gen_y_im" : 4082367875863433681332203403145435568316851327593401208105741076214120093531,
|
||||
"nonresidue" : -1
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"curve_name" : "bw6_761",
|
||||
"modulus_p" : 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177,
|
||||
"bit_count_p" : 377,
|
||||
"limb_p" : 12,
|
||||
"ntt_size" : 46,
|
||||
"modulus_q" : 6891450384315732539396789682275657542479668912536150109513790160209623422243491736087683183289411687640864567753786613451161759120554247759349511699125301598951605099378508850372543631423596795951899700429969112842764913119068299,
|
||||
"bit_count_q" : 761,
|
||||
"limb_q" : 24,
|
||||
"root_of_unity" : 32863578547254505029601261939868325669770508939375122462904745766352256812585773382134936404344547323199885654433,
|
||||
"weierstrass_b" : 6891450384315732539396789682275657542479668912536150109513790160209623422243491736087683183289411687640864567753786613451161759120554247759349511699125301598951605099378508850372543631423596795951899700429969112842764913119068298,
|
||||
"weierstrass_b_g2_re" : 4,
|
||||
"weierstrass_b_g2_im" : 0,
|
||||
"g1_gen_x" : 6238772257594679368032145693622812838779005809760824733138787810501188623461307351759238099287535516224314149266511977132140828635950940021790489507611754366317801811090811367945064510304504157188661901055903167026722666149426237,
|
||||
"g1_gen_y" : 2101735126520897423911504562215834951148127555913367997162789335052900271653517958562461315794228241561913734371411178226936527683203879553093934185950470971848972085321797958124416462268292467002957525517188485984766314758624099,
|
||||
"g2_gen_x_re" : 6445332910596979336035888152774071626898886139774101364933948236926875073754470830732273879639675437155036544153105017729592600560631678554299562762294743927912429096636156401171909259073181112518725201388196280039960074422214428,
|
||||
"g2_gen_x_im" : 1,
|
||||
"g2_gen_y_re" : 562923658089539719386922163444547387757586534741080263946953401595155211934630598999300396317104182598044793758153214972605680357108252243146746187917218885078195819486220416605630144001533548163105316661692978285266378674355041,
|
||||
"g2_gen_y_im" : 1,
|
||||
"nonresidue" : -1
|
||||
}
|
||||
@@ -1,346 +0,0 @@
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from string import Template
|
||||
import sys
|
||||
|
||||
|
||||
argv_list = ['thisfile', 'curve_json', 'command']
|
||||
new_curve_args = dict(zip(argv_list, sys.argv[:len(argv_list)] + [""]*(len(argv_list) - len(sys.argv))))
|
||||
|
||||
def to_hex(val: int, length):
|
||||
x = hex(val)[2:]
|
||||
if len(x) % 8 != 0:
|
||||
x = "0" * (8-len(x) % 8) + x
|
||||
if len(x) != length:
|
||||
x = "0" * (length-len(x)) + x
|
||||
n = 8
|
||||
chunks = [x[i:i+n] for i in range(0, len(x), n)][::-1]
|
||||
s = ""
|
||||
for c in chunks[:length // n]:
|
||||
s += f'0x{c}, '
|
||||
|
||||
return s[:-2]
|
||||
|
||||
|
||||
def compute_values(modulus, modulus_bit_count, limbs):
|
||||
limb_size = 8*limbs
|
||||
bit_size = 4*limb_size
|
||||
modulus_ = to_hex(modulus,limb_size)
|
||||
modulus_2 = to_hex(modulus*2,limb_size)
|
||||
modulus_4 = to_hex(modulus*4,limb_size)
|
||||
modulus_wide = to_hex(modulus,limb_size*2)
|
||||
modulus_squared = to_hex(modulus*modulus,limb_size*2)
|
||||
modulus_squared_2 = to_hex(modulus*modulus*2,limb_size*2)
|
||||
modulus_squared_4 = to_hex(modulus*modulus*4,limb_size*2)
|
||||
m_raw = int(math.floor(int(pow(2,2*modulus_bit_count) // modulus)))
|
||||
m = to_hex(m_raw,limb_size)
|
||||
one = to_hex(1,limb_size)
|
||||
zero = to_hex(0,limb_size)
|
||||
montgomery_r = to_hex(pow(2,bit_size,modulus),limb_size)
|
||||
montgomery_r_inv = to_hex(pow(2,-bit_size,modulus),limb_size)
|
||||
|
||||
return (
|
||||
modulus_,
|
||||
modulus_2,
|
||||
modulus_4,
|
||||
modulus_wide,
|
||||
modulus_squared,
|
||||
modulus_squared_2,
|
||||
modulus_squared_4,
|
||||
m,
|
||||
one,
|
||||
zero,
|
||||
montgomery_r,
|
||||
montgomery_r_inv
|
||||
)
|
||||
|
||||
|
||||
def get_fq_params(modulus, modulus_bit_count, limbs, nonresidue):
|
||||
(
|
||||
modulus,
|
||||
modulus_2,
|
||||
modulus_4,
|
||||
modulus_wide,
|
||||
modulus_squared,
|
||||
modulus_squared_2,
|
||||
modulus_squared_4,
|
||||
m,
|
||||
one,
|
||||
zero,
|
||||
montgomery_r,
|
||||
montgomery_r_inv
|
||||
) = compute_values(modulus, modulus_bit_count, limbs)
|
||||
|
||||
limb_size = 8*limbs
|
||||
nonresidue_is_negative = str(nonresidue < 0).lower()
|
||||
nonresidue = abs(nonresidue)
|
||||
return {
|
||||
'fq_modulus': modulus,
|
||||
'fq_modulus_2': modulus_2,
|
||||
'fq_modulus_4': modulus_4,
|
||||
'fq_modulus_wide': modulus_wide,
|
||||
'fq_modulus_squared': modulus_squared,
|
||||
'fq_modulus_squared_2': modulus_squared_2,
|
||||
'fq_modulus_squared_4': modulus_squared_4,
|
||||
'fq_m': m,
|
||||
'fq_one': one,
|
||||
'fq_zero': zero,
|
||||
'fq_montgomery_r': montgomery_r,
|
||||
'fq_montgomery_r_inv': montgomery_r_inv,
|
||||
'nonresidue': nonresidue,
|
||||
'nonresidue_is_negative': nonresidue_is_negative
|
||||
}
|
||||
|
||||
|
||||
def get_fp_params(modulus, modulus_bit_count, limbs, root_of_unity, size=0):
|
||||
(
|
||||
modulus_,
|
||||
modulus_2,
|
||||
modulus_4,
|
||||
modulus_wide,
|
||||
modulus_squared,
|
||||
modulus_squared_2,
|
||||
modulus_squared_4,
|
||||
m,
|
||||
one,
|
||||
zero,
|
||||
montgomery_r,
|
||||
montgomery_r_inv
|
||||
) = compute_values(modulus, modulus_bit_count, limbs)
|
||||
limb_size = 8*limbs
|
||||
if size > 0:
|
||||
omega = ''
|
||||
omega_inv = ''
|
||||
inv = ''
|
||||
omegas = []
|
||||
omegas_inv = []
|
||||
for k in range(size):
|
||||
if k == 0:
|
||||
om = root_of_unity
|
||||
else:
|
||||
om = pow(om, 2, modulus)
|
||||
omegas.append(om)
|
||||
omegas_inv.append(pow(om, -1, modulus))
|
||||
omegas.reverse()
|
||||
omegas_inv.reverse()
|
||||
for k in range(size):
|
||||
omega += "\n {"+ to_hex(omegas[k],limb_size)+"}," if k>0 else " {"+ to_hex(omegas[k],limb_size)+"},"
|
||||
omega_inv += "\n {"+ to_hex(omegas_inv[k],limb_size)+"}," if k>0 else " {"+ to_hex(omegas_inv[k],limb_size)+"},"
|
||||
inv += "\n {"+ to_hex(pow(int(pow(2,k+1)), -1, modulus),limb_size)+"}," if k>0 else " {"+ to_hex(pow(int(pow(2,k+1)), -1, modulus),limb_size)+"},"
|
||||
|
||||
|
||||
return {
|
||||
'fp_modulus': modulus_,
|
||||
'fp_modulus_2': modulus_2,
|
||||
'fp_modulus_4': modulus_4,
|
||||
'fp_modulus_wide': modulus_wide,
|
||||
'fp_modulus_squared': modulus_squared,
|
||||
'fp_modulus_squared_2': modulus_squared_2,
|
||||
'fp_modulus_squared_4': modulus_squared_4,
|
||||
'fp_m': m,
|
||||
'fp_one': one,
|
||||
'fp_zero': zero,
|
||||
'fp_montgomery_r': montgomery_r,
|
||||
'fp_montgomery_r_inv': montgomery_r_inv,
|
||||
'omega': omega[:-1],
|
||||
'omega_inv': omega_inv[:-1],
|
||||
'inv': inv[:-1],
|
||||
}
|
||||
|
||||
|
||||
def get_generators(g1_gen_x, g1_gen_y, g2_gen_x_re, g2_gen_x_im, g2_gen_y_re, g2_gen_y_im, size):
|
||||
|
||||
return {
|
||||
'fq_gen_x': to_hex(g1_gen_x, size),
|
||||
'fq_gen_y': to_hex(g1_gen_y, size),
|
||||
'fq_gen_x_re': to_hex(g2_gen_x_re, size),
|
||||
'fq_gen_x_im': to_hex(g2_gen_x_im, size),
|
||||
'fq_gen_y_re': to_hex(g2_gen_y_re, size),
|
||||
'fq_gen_y_im': to_hex(g2_gen_y_im, size)
|
||||
}
|
||||
|
||||
|
||||
def get_weier_params(weierstrass_b, weierstrass_b_g2_re, weierstrass_b_g2_im, size):
|
||||
|
||||
return {
|
||||
'weier_b': to_hex(weierstrass_b, size),
|
||||
'weier_b_g2_re': to_hex(weierstrass_b_g2_re, size),
|
||||
'weier_b_g2_im': to_hex(weierstrass_b_g2_im, size),
|
||||
}
|
||||
|
||||
|
||||
def get_params(config):
|
||||
global ntt_size
|
||||
curve_name = config["curve_name"]
|
||||
modulus_p = config["modulus_p"]
|
||||
bit_count_p = config["bit_count_p"]
|
||||
limb_p = config["limb_p"]
|
||||
ntt_size = config["ntt_size"]
|
||||
modulus_q = config["modulus_q"]
|
||||
bit_count_q = config["bit_count_q"]
|
||||
limb_q = config["limb_q"]
|
||||
root_of_unity = config["root_of_unity"]
|
||||
nonresidue = config["nonresidue"]
|
||||
if root_of_unity == modulus_p:
|
||||
sys.exit("Invalid root_of_unity value; please update in curve parameters")
|
||||
|
||||
weierstrass_b = config["weierstrass_b"]
|
||||
weierstrass_b_g2_re = config["weierstrass_b_g2_re"]
|
||||
weierstrass_b_g2_im = config["weierstrass_b_g2_im"]
|
||||
g1_gen_x = config["g1_gen_x"]
|
||||
g1_gen_y = config["g1_gen_y"]
|
||||
g2_generator_x_re = config["g2_gen_x_re"]
|
||||
g2_generator_x_im = config["g2_gen_x_im"]
|
||||
g2_generator_y_re = config["g2_gen_y_re"]
|
||||
g2_generator_y_im = config["g2_gen_y_im"]
|
||||
|
||||
params = {
|
||||
'curve_name_U': curve_name.upper(),
|
||||
'fp_num_limbs': limb_p,
|
||||
'fq_num_limbs': limb_q,
|
||||
'fp_modulus_bit_count': bit_count_p,
|
||||
'fq_modulus_bit_count': bit_count_q,
|
||||
'num_omegas': ntt_size
|
||||
}
|
||||
|
||||
fp_params = get_fp_params(modulus_p, bit_count_p, limb_p, root_of_unity, ntt_size)
|
||||
fq_params = get_fq_params(modulus_q, bit_count_q, limb_q, nonresidue)
|
||||
generators = get_generators(g1_gen_x, g1_gen_y, g2_generator_x_re, g2_generator_x_im, g2_generator_y_re, g2_generator_y_im, 8*limb_q)
|
||||
weier_params = get_weier_params(weierstrass_b, weierstrass_b_g2_re, weierstrass_b_g2_im, 8*limb_q)
|
||||
|
||||
return {
|
||||
**params,
|
||||
**fp_params,
|
||||
**fq_params,
|
||||
**generators,
|
||||
**weier_params
|
||||
}
|
||||
|
||||
|
||||
config = None
|
||||
with open(new_curve_args['curve_json']) as json_file:
|
||||
config = json.load(json_file)
|
||||
|
||||
curve_name_lower = config["curve_name"].lower()
|
||||
curve_name_upper = config["curve_name"].upper()
|
||||
limb_q = config["limb_q"]
|
||||
limb_p = config["limb_p"]
|
||||
|
||||
# Create Cuda interface
|
||||
|
||||
newpath = f'./icicle/curves/{curve_name_lower}'
|
||||
if not os.path.exists(newpath):
|
||||
os.makedirs(newpath)
|
||||
|
||||
with open("./icicle/curves/curve_template/params.cuh.tmpl", "r") as params_file:
|
||||
params_file_template = Template(params_file.read())
|
||||
params = get_params(config)
|
||||
params_content = params_file_template.safe_substitute(params)
|
||||
with open(f'./icicle/curves/{curve_name_lower}/params.cuh', 'w') as f:
|
||||
f.write(params_content)
|
||||
|
||||
if new_curve_args['command'] != '-update':
|
||||
with open("./icicle/curves/curve_template/lde.cu.tmpl", "r") as lde_file:
|
||||
template_content = Template(lde_file.read())
|
||||
lde_content = template_content.safe_substitute(
|
||||
CURVE_NAME_U=curve_name_upper,
|
||||
CURVE_NAME_L=curve_name_lower
|
||||
)
|
||||
with open(f'./icicle/curves/{curve_name_lower}/lde.cu', 'w') as f:
|
||||
f.write(lde_content)
|
||||
|
||||
with open("./icicle/curves/curve_template/msm.cu.tmpl", "r") as msm_file:
|
||||
template_content = Template(msm_file.read())
|
||||
msm_content = template_content.safe_substitute(
|
||||
CURVE_NAME_U=curve_name_upper,
|
||||
CURVE_NAME_L=curve_name_lower
|
||||
)
|
||||
with open(f'./icicle/curves/{curve_name_lower}/msm.cu', 'w') as f:
|
||||
f.write(msm_content)
|
||||
|
||||
with open("./icicle/curves/curve_template/ve_mod_mult.cu.tmpl", "r") as ve_mod_mult_file:
|
||||
template_content = Template(ve_mod_mult_file.read())
|
||||
ve_mod_mult_content = template_content.safe_substitute(
|
||||
CURVE_NAME_U=curve_name_upper,
|
||||
CURVE_NAME_L=curve_name_lower
|
||||
)
|
||||
with open(f'./icicle/curves/{curve_name_lower}/ve_mod_mult.cu', 'w') as f:
|
||||
f.write(ve_mod_mult_content)
|
||||
|
||||
|
||||
with open(f'./icicle/curves/curve_template/curve_config.cuh.tmpl', 'r') as cc:
|
||||
template_content = Template(cc.read())
|
||||
cc_content = template_content.safe_substitute(
|
||||
CURVE_NAME_U=curve_name_upper,
|
||||
)
|
||||
with open(f'./icicle/curves/{curve_name_lower}/curve_config.cuh', 'w') as f:
|
||||
f.write(cc_content)
|
||||
|
||||
|
||||
with open(f'./icicle/curves/curve_template/projective.cu.tmpl', 'r') as proj:
|
||||
template_content = Template(proj.read())
|
||||
proj_content = template_content.safe_substitute(
|
||||
CURVE_NAME_U=curve_name_upper,
|
||||
CURVE_NAME_L=curve_name_lower
|
||||
)
|
||||
with open(f'./icicle/curves/{curve_name_lower}/projective.cu', 'w') as f:
|
||||
f.write(proj_content)
|
||||
|
||||
|
||||
with open(f'./icicle/curves/curve_template/supported_operations.cu.tmpl', 'r') as supp_ops:
|
||||
template_content = Template(supp_ops.read())
|
||||
supp_ops_content = template_content.safe_substitute()
|
||||
with open(f'./icicle/curves/{curve_name_lower}/supported_operations.cu', 'w') as f:
|
||||
f.write(supp_ops_content)
|
||||
|
||||
|
||||
with open('./icicle/curves/index.cu', 'r+') as f:
|
||||
index_text = f.read()
|
||||
if index_text.find(curve_name_lower) == -1:
|
||||
f.write(f'\n#include "{curve_name_lower}/supported_operations.cu"')
|
||||
|
||||
|
||||
|
||||
# Create Rust interface and tests
|
||||
|
||||
if limb_p == limb_q:
|
||||
with open("./src/curve_templates/curve_same_limbs.rs", "r") as curve_file:
|
||||
content = curve_file.read()
|
||||
content = content.replace("CURVE_NAME_U",curve_name_upper)
|
||||
content = content.replace("CURVE_NAME_L",curve_name_lower)
|
||||
content = content.replace("_limbs_p",str(limb_p * 8 * 4))
|
||||
content = content.replace("limbs_p",str(limb_p))
|
||||
text_file = open("./src/curves/"+curve_name_lower+".rs", "w")
|
||||
n = text_file.write(content)
|
||||
text_file.close()
|
||||
else:
|
||||
with open("./src/curve_templates/curve_different_limbs.rs", "r") as curve_file:
|
||||
content = curve_file.read()
|
||||
content = content.replace("CURVE_NAME_U",curve_name_upper)
|
||||
content = content.replace("CURVE_NAME_L",curve_name_lower)
|
||||
content = content.replace("_limbs_p",str(limb_p * 8 * 4))
|
||||
content = content.replace("limbs_p",str(limb_p))
|
||||
content = content.replace("_limbs_q",str(limb_q * 8 * 4))
|
||||
content = content.replace("limbs_q",str(limb_q))
|
||||
text_file = open("./src/curves/"+curve_name_lower+".rs", "w")
|
||||
n = text_file.write(content)
|
||||
text_file.close()
|
||||
|
||||
with open("./src/curve_templates/test.rs", "r") as test_file:
|
||||
content = test_file.read()
|
||||
content = content.replace("CURVE_NAME_U",curve_name_upper)
|
||||
content = content.replace("CURVE_NAME_L",curve_name_lower)
|
||||
text_file = open("./src/test_"+curve_name_lower+".rs", "w")
|
||||
n = text_file.write(content)
|
||||
text_file.close()
|
||||
|
||||
with open('./src/curves/mod.rs', 'r+') as f:
|
||||
mod_text = f.read()
|
||||
if mod_text.find(curve_name_lower) == -1:
|
||||
f.write('\npub mod ' + curve_name_lower + ';')
|
||||
|
||||
with open('./src/lib.rs', 'r+') as f:
|
||||
lib_text = f.read()
|
||||
if lib_text.find(curve_name_lower) == -1:
|
||||
f.write('\npub mod ' + curve_name_lower + ';')
|
||||
1
docs/.codespellignore
Normal file
@@ -0,0 +1 @@
|
||||
ICICLE
|
||||
17
docs/.gitignore
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
.docusaurus/
|
||||
node_modules/
|
||||
yarn.lock
|
||||
.DS_Store
|
||||
|
||||
# tex build artifacts
|
||||
.aux
|
||||
.bbl
|
||||
.bcf
|
||||
.blg
|
||||
.fdb_latexmk
|
||||
.fls
|
||||
.log
|
||||
.out
|
||||
.xml
|
||||
.gz
|
||||
.toc
|
||||
17
docs/.prettierignore
Normal file
@@ -0,0 +1,17 @@
|
||||
.docusaurus/
|
||||
node_modules/
|
||||
yarn.lock
|
||||
.DS_Store
|
||||
|
||||
# tex build artifacts
|
||||
.aux
|
||||
.bbl
|
||||
.bcf
|
||||
.blg
|
||||
.fdb_latexmk
|
||||
.fls
|
||||
.log
|
||||
.out
|
||||
.xml
|
||||
.gz
|
||||
.toc
|
||||
10
docs/.prettierrc
Normal file
@@ -0,0 +1,10 @@
|
||||
{
|
||||
"semi": false,
|
||||
"singleQuote": true,
|
||||
"trailingComma": "es5",
|
||||
"printWidth": 80,
|
||||
"tabWidth": 2,
|
||||
"useTabs": false,
|
||||
"proseWrap": "preserve",
|
||||
"endOfLine": "lf"
|
||||
}
|
||||
1
docs/CNAME
Normal file
@@ -0,0 +1 @@
|
||||
dev.ingonyama.com
|
||||
39
docs/README.md
Normal file
@@ -0,0 +1,39 @@
|
||||
# Website
|
||||
|
||||
This website is built using [Docusaurus 2](https://docusaurus.io/), a modern static website generator.
|
||||
|
||||
### Installation
|
||||
|
||||
```
|
||||
$ npm i
|
||||
```
|
||||
|
||||
### Local Development
|
||||
|
||||
```
|
||||
$ npm start
|
||||
```
|
||||
|
||||
This command starts a local development server and opens up a browser window. Most changes are reflected live without having to restart the server.
|
||||
|
||||
### Build
|
||||
|
||||
```
|
||||
$ npm run build
|
||||
```
|
||||
|
||||
This command generates static content into the `build` directory and can be served using any static contents hosting service.
|
||||
|
||||
### Deployment
|
||||
|
||||
Using SSH:
|
||||
|
||||
```
|
||||
$ USE_SSH=true npm run deploy
|
||||
```
|
||||
|
||||
Not using SSH:
|
||||
|
||||
```
|
||||
$ GIT_USER=<Your GitHub username> npm run deploy
|
||||
```
|
||||
3
docs/babel.config.js
Normal file
@@ -0,0 +1,3 @@
|
||||
module.exports = {
|
||||
presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
|
||||
};
|
||||
12
docs/docs/ZKContainers.md
Normal file
@@ -0,0 +1,12 @@
|
||||
# ZKContainer
|
||||
|
||||
We found that developing ZK provers with ICICLE gives developers the ability to scale ZK provers across many machines and many GPUs. To make this possible we developed the ZKContainer.
|
||||
|
||||
## What is a ZKContainer?
|
||||
|
||||
A ZKContainer is a standardized, optimized and secure docker container that we configured with ICICLE applications in mind. A developer using our ZKContainer can deploy an ICICLE application on a single machine or on a thousand GPU machines in a data center with minimal concerns regarding compatibility.
|
||||
|
||||
ZKContainer has been used by Ingonyama clients to achieve scalability across large data centers.
|
||||
We suggest you read our [article](https://medium.com/@ingonyama/product-announcement-zk-containers-0e2a1f2d0a2b) regarding ZKContainer to understand the benefits of using them.
|
||||
|
||||

|
||||
23
docs/docs/contributor-guide.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Contributor's Guide
|
||||
|
||||
We welcome all contributions with open arms. At Ingonyama we take a village approach, believing it takes many hands and minds to build a ecosystem.
|
||||
|
||||
## Contributing to ICICLE
|
||||
|
||||
- Make suggestions or report bugs via [GitHub issues](https://github.com/ingonyama-zk/icicle/issues)
|
||||
- Contribute to the ICICLE by opening a [pull request](https://github.com/ingonyama-zk/icicle/pulls).
|
||||
- Contribute to our [documentation](https://github.com/ingonyama-zk/icicle/tree/main/docs) and [examples](https://github.com/ingonyama-zk/icicle/tree/main/examples).
|
||||
- Ask questions on Discord
|
||||
|
||||
### Opening a pull request
|
||||
|
||||
When opening a [pull request](https://github.com/ingonyama-zk/icicle/pulls) please keep the following in mind.
|
||||
|
||||
- `Clear Purpose` - The pull request should solve a single issue and be clean of any unrelated changes.
|
||||
- `Clear description` - If the pull request is for a new feature describe what you built, why you added it and how its best that we test it. For bug fixes please describe the issue and the solution.
|
||||
- `Consistent style` - Rust and Golang code should be linted by the official linters (golang fmt and rust fmt) and maintain a proper style. For CUDA and C++ code we use [`clang-format`](https://github.com/ingonyama-zk/icicle/blob/main/.clang-format), [here](https://github.com/ingonyama-zk/icicle/blob/605c25f9d22135c54ac49683b710fe2ce06e2300/.github/workflows/main-format.yml#L46) you can see how we run it.
|
||||
- `Minimal Tests` - please add test which cover basic usage of your changes .
|
||||
|
||||
## Questions?
|
||||
|
||||
Find us on [Discord](https://discord.gg/6vYrE7waPj).
|
||||
23
docs/docs/grants.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Ingonyama Grant programs
|
||||
|
||||
Ingonyama understands the importance of supporting and fostering a vibrant community of researchers and builders to advance ZK. To encourage progress, we are not only developing in the open but also sharing resources with researchers and builders through various programs.
|
||||
|
||||
## ICICLE ZK-GPU Ecosystem Grant
|
||||
|
||||
Ingonyama invites researchers and practitioners to collaborate in advancing ZK acceleration. We are allocating $100,000 for grants to support this initiative.
|
||||
|
||||
### Bounties & Grants
|
||||
|
||||
Eligibility for grants includes:
|
||||
|
||||
1. **Students**: Utilize ICICLE in your research.
|
||||
2. **Performance Improvement**: Enhance the performance of accelerated primitives in ICICLE.
|
||||
3. **Protocol Porting**: Migrate existing ZK protocols to ICICLE.
|
||||
4. **New Primitives**: Contribute new primitives to ICICLE.
|
||||
5. **Benchmarking**: Compare ZK benchmarks against ICICLE.
|
||||
|
||||
## Contact
|
||||
|
||||
For questions or submissions: [grants@ingonyama.com](mailto:grants@ingonyama.com)
|
||||
|
||||
**Read the full article [here](https://www.ingonyama.com/blog/icicle-for-researchers-grants-challenges)**
|
||||
138
docs/docs/icicle/colab-instructions.md
Normal file
@@ -0,0 +1,138 @@
|
||||
# Run ICICLE on Google Colab
|
||||
|
||||
Google Colab lets you use a GPU free of charge, it's an Nvidia T4 GPU with 16 GB of memory, capable of running latest CUDA (tested on Cuda 12.2)
|
||||
As Colab is able to interact with shell commands, a user can also install a framework and load git repositories into Colab space.
|
||||
|
||||
## Prepare Colab environment
|
||||
|
||||
First thing to do in a notebook is to set the runtime type to a T4 GPU.
|
||||
|
||||
- in the upper corner click on the dropdown menu and select "change runtime type"
|
||||
|
||||

|
||||
|
||||
- In the window select "T4 GPU" and press Save
|
||||
|
||||

|
||||
|
||||
Installing Rust is rather simple, just execute the following command:
|
||||
|
||||
```sh
|
||||
!apt install rustc cargo
|
||||
```
|
||||
|
||||
To test the installation of Rust:
|
||||
|
||||
```sh
|
||||
!rustc --version
|
||||
!cargo --version
|
||||
```
|
||||
|
||||
A successful installation will result in a rustc and cargo version print, a faulty installation will look like this:
|
||||
|
||||
```sh
|
||||
/bin/bash: line 1: rustc: command not found
|
||||
/bin/bash: line 1: cargo: command not found
|
||||
```
|
||||
|
||||
Now we will check the environment:
|
||||
|
||||
```sh
|
||||
!nvcc --version
|
||||
!gcc --version
|
||||
!cmake --version
|
||||
!nvidia-smi
|
||||
```
|
||||
|
||||
A correct environment should print the result with no bash errors for `nvidia-smi` command and result in a **Teslt T4 GPU** type:
|
||||
|
||||
```sh
|
||||
nvcc: NVIDIA (R) Cuda compiler driver
|
||||
Copyright (c) 2005-2023 NVIDIA Corporation
|
||||
Built on Tue_Aug_15_22:02:13_PDT_2023
|
||||
Cuda compilation tools, release 12.2, V12.2.140
|
||||
Build cuda_12.2.r12.2/compiler.33191640_0
|
||||
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
|
||||
Copyright (C) 2021 Free Software Foundation, Inc.
|
||||
This is free software; see the source for copying conditions. There is NO
|
||||
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
|
||||
cmake version 3.27.9
|
||||
|
||||
CMake suite maintained and supported by Kitware (kitware.com/cmake).
|
||||
Wed Jan 17 13:10:18 2024
|
||||
+---------------------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |
|
||||
|-----------------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|=========================================+======================+======================|
|
||||
| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |
|
||||
| N/A 39C P8 9W / 70W | 0MiB / 15360MiB | 0% Default |
|
||||
| | | N/A |
|
||||
+-----------------------------------------+----------------------+----------------------+
|
||||
|
||||
+---------------------------------------------------------------------------------------+
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
| ID ID Usage |
|
||||
|=======================================================================================|
|
||||
| No running processes found |
|
||||
+---------------------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
## Cloning ICICLE and running test
|
||||
|
||||
Now we are ready to clone ICICE repository,
|
||||
|
||||
```sh
|
||||
!git clone https://github.com/ingonyama-zk/icicle.git
|
||||
```
|
||||
|
||||
We now can browse the repository and run tests to check the runtime environment:
|
||||
|
||||
```sh
|
||||
!ls -la
|
||||
%cd icicle
|
||||
```
|
||||
|
||||
Let's run a test!
|
||||
Navigate to icicle/wrappers/rust/icicle-curves/icicle-bn254 and run cargo test:
|
||||
|
||||
```sh
|
||||
%cd wrappers/rust/icicle-curves/icicle-bn254/
|
||||
!cargo test --release
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
Compiling the first time may take a while
|
||||
|
||||
:::
|
||||
|
||||
Test run should end like this:
|
||||
|
||||
```sh
|
||||
running 15 tests
|
||||
test curve::tests::test_ark_point_convert ... ok
|
||||
test curve::tests::test_ark_scalar_convert ... ok
|
||||
test curve::tests::test_affine_projective_convert ... ok
|
||||
test curve::tests::test_point_equality ... ok
|
||||
test curve::tests::test_field_convert_montgomery ... ok
|
||||
test curve::tests::test_scalar_equality ... ok
|
||||
test curve::tests::test_points_convert_montgomery ... ok
|
||||
test msm::tests::test_msm ... ok
|
||||
test msm::tests::test_msm_skewed_distributions ... ok
|
||||
test ntt::tests::test_ntt ... ok
|
||||
test ntt::tests::test_ntt_arbitrary_coset ... ok
|
||||
test msm::tests::test_msm_batch has been running for over 60 seconds
|
||||
test msm::tests::test_msm_batch ... ok
|
||||
test ntt::tests::test_ntt_coset_from_subgroup ... ok
|
||||
test ntt::tests::test_ntt_device_async ... ok
|
||||
test ntt::tests::test_ntt_batch ... ok
|
||||
|
||||
test result: ok. 15 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 99.39s
|
||||
```
|
||||
|
||||
Viola, ICICLE in Colab!
|
||||
105
docs/docs/icicle/golang-bindings.md
Normal file
@@ -0,0 +1,105 @@
|
||||
# Golang bindings
|
||||
|
||||
Golang bindings allow you to use ICICLE as a golang library.
|
||||
The source code for all Golang libraries can be found [here](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/golang).
|
||||
|
||||
The Golang bindings are comprised of multiple packages.
|
||||
|
||||
[`core`](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/golang/core) which defines all shared methods and structures, such as configuration structures, or memory slices.
|
||||
|
||||
[`cuda-runtime`](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/golang/cuda_runtime) which defines abstractions for CUDA methods for allocating memory, initializing and managing streams, and `DeviceContext` which enables users to define and keep track of devices.
|
||||
|
||||
Each curve has its own package which you can find [here](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/golang/curves). If your project uses BN254 you only need to install that single package named [`bn254`](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/golang/curves/bn254).
|
||||
|
||||
## Using ICICLE Golang bindings in your project
|
||||
|
||||
To add ICICLE to your `go.mod` file.
|
||||
|
||||
```bash
|
||||
go get github.com/ingonyama-zk/icicle
|
||||
```
|
||||
|
||||
If you want to specify a specific branch
|
||||
|
||||
```bash
|
||||
go get github.com/ingonyama-zk/icicle@<branch_name>
|
||||
```
|
||||
|
||||
For a specific commit
|
||||
|
||||
```bash
|
||||
go get github.com/ingonyama-zk/icicle@<commit_id>
|
||||
```
|
||||
|
||||
To build the shared libraries you can run this script:
|
||||
|
||||
```
|
||||
./build <curve> [G2_enabled]
|
||||
|
||||
curve - The name of the curve to build or "all" to build all curves
|
||||
G2_enabled - Optional - To build with G2 enabled
|
||||
```
|
||||
|
||||
For example if you want to build all curves with G2 enabled you would run:
|
||||
|
||||
```bash
|
||||
./build.sh all ON
|
||||
```
|
||||
|
||||
If you are interested in building a specific curve you would run:
|
||||
|
||||
```bash
|
||||
./build.sh bls12_381 ON
|
||||
```
|
||||
|
||||
Now you can import ICICLE into your project
|
||||
|
||||
```golang
|
||||
import (
|
||||
"github.com/stretchr/testify/assert"
|
||||
"testing"
|
||||
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
cr "github.com/ingonyama-zk/icicle/wrappers/golang/cuda_runtime"
|
||||
)
|
||||
...
|
||||
```
|
||||
|
||||
## Running tests
|
||||
|
||||
To run all tests, for all curves:
|
||||
|
||||
```bash
|
||||
go test --tags=g2 ./... -count=1
|
||||
```
|
||||
|
||||
If you dont want to include g2 tests then drop `--tags=g2`.
|
||||
|
||||
If you wish to run test for a specific curve:
|
||||
|
||||
```bash
|
||||
go test <path_to_curve> -count=1
|
||||
```
|
||||
|
||||
## How do Golang bindings work?
|
||||
|
||||
The libraries produced from the CUDA code compilation are used to bind Golang to ICICLE's CUDA code.
|
||||
|
||||
1. These libraries (named `libingo_<curve>.a`) can be imported in your Go project to leverage the GPU accelerated functionalities provided by ICICLE.
|
||||
|
||||
2. In your Go project, you can use `cgo` to link these libraries. Here's a basic example on how you can use `cgo` to link these libraries:
|
||||
|
||||
```go
|
||||
/*
|
||||
#cgo LDFLAGS: -L/path/to/shared/libs -lingo_bn254
|
||||
#include "icicle.h" // make sure you use the correct header file(s)
|
||||
*/
|
||||
import "C"
|
||||
|
||||
func main() {
|
||||
// Now you can call the C functions from the ICICLE libraries.
|
||||
// Note that C function calls are prefixed with 'C.' in Go code.
|
||||
}
|
||||
```
|
||||
|
||||
Replace `/path/to/shared/libs` with the actual path where the shared libraries are located on your system.
|
||||
92
docs/docs/icicle/golang-bindings/msm-pre-computation.md
Normal file
@@ -0,0 +1,92 @@
|
||||
# MSM Pre computation
|
||||
|
||||
To understand the theory behind MSM pre computation technique refer to Niall Emmart's [talk](https://youtu.be/KAWlySN7Hm8?feature=shared&t=1734).
|
||||
|
||||
### Supported curves
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn254`, `bw6-761`
|
||||
|
||||
## Core package
|
||||
|
||||
## MSM `PrecomputeBases`
|
||||
|
||||
`PrecomputeBases` and `G2PrecomputeBases` exists for all supported curves.
|
||||
|
||||
#### Description
|
||||
|
||||
This function extends each provided base point $(P)$ with its multiples $(2^lP, 2^{2l}P, ..., 2^{(precompute_factor - 1) \cdot l}P)$, where $(l)$ is a level of precomputation determined by the `precompute_factor`. The extended set of points facilitates faster MSM computations by allowing the MSM algorithm to leverage precomputed multiples of base points, reducing the number of point additions required during the computation.
|
||||
|
||||
The precomputation process is crucial for optimizing MSM operations, especially when dealing with large sets of points and scalars. By precomputing and storing multiples of the base points, the MSM function can more efficiently compute the scalar-point multiplications.
|
||||
|
||||
#### `PrecomputeBases`
|
||||
|
||||
Precomputes bases for MSM by extending each base point with its multiples.
|
||||
|
||||
```go
|
||||
func PrecomputeBases(points core.HostOrDeviceSlice, precomputeFactor int32, c int32, ctx *cr.DeviceContext, outputBases core.DeviceSlice) cr.CudaError
|
||||
```
|
||||
|
||||
##### Parameters
|
||||
|
||||
- **`points`**: A slice of the original affine points to be extended with their multiples.
|
||||
- **`precomputeFactor`**: Determines the total number of points to precompute for each base point.
|
||||
- **`c`**: Currently unused; reserved for future compatibility.
|
||||
- **`ctx`**: CUDA device context specifying the execution environment.
|
||||
- **`outputBases`**: The device slice allocated for storing the extended bases.
|
||||
|
||||
##### Example
|
||||
|
||||
```go
|
||||
cfg := GetDefaultMSMConfig()
|
||||
points := GenerateAffinePoints(1024)
|
||||
precomputeFactor := 8
|
||||
var precomputeOut core.DeviceSlice
|
||||
_, e := precomputeOut.Malloc(points[0].Size()*points.Len()*int(precomputeFactor), points[0].Size())
|
||||
|
||||
err := PrecomputeBases(points, precomputeFactor, 0, &cfg.Ctx, precomputeOut)
|
||||
if err != cr.CudaSuccess {
|
||||
log.Fatalf("PrecomputeBases failed: %v", err)
|
||||
}
|
||||
```
|
||||
|
||||
#### `G2PrecomputeBases`
|
||||
|
||||
This method is the same as `PrecomputeBases` but for G2 points. Extends each G2 curve base point with its multiples for optimized MSM computations.
|
||||
|
||||
```go
|
||||
func G2PrecomputeBases(points core.HostOrDeviceSlice, precomputeFactor int32, c int32, ctx *cr.DeviceContext, outputBases core.DeviceSlice) cr.CudaError
|
||||
```
|
||||
|
||||
##### Parameters
|
||||
|
||||
- **`points`**: A slice of G2 curve points to be extended.
|
||||
- **`precomputeFactor`**: The total number of points to precompute for each base.
|
||||
- **`c`**: Reserved for future use to ensure compatibility with MSM operations.
|
||||
- **`ctx`**: Specifies the CUDA device context for execution.
|
||||
- **`outputBases`**: Allocated device slice for the extended bases.
|
||||
|
||||
##### Example
|
||||
|
||||
```go
|
||||
cfg := G2GetDefaultMSMConfig()
|
||||
points := G2GenerateAffinePoints(1024)
|
||||
precomputeFactor := 8
|
||||
var precomputeOut core.DeviceSlice
|
||||
_, e := precomputeOut.Malloc(points[0].Size()*points.Len()*int(precomputeFactor), points[0].Size())
|
||||
|
||||
err := G2PrecomputeBases(points, precomputeFactor, 0, &cfg.Ctx, precomputeOut)
|
||||
if err != cr.CudaSuccess {
|
||||
log.Fatalf("G2PrecomputeBases failed: %v", err)
|
||||
}
|
||||
```
|
||||
|
||||
### Benchmarks
|
||||
|
||||
Benchmarks where performed on a Nvidia RTX 3090Ti.
|
||||
|
||||
| Pre-computation factor | bn254 size `2^20` MSM, ms. | bn254 size `2^12` MSM, size `2^10` batch, ms. | bls12-381 size `2^20` MSM, ms. | bls12-381 size `2^12` MSM, size `2^10` batch, ms. |
|
||||
| ------------- | ------------- | ------------- | ------------- | ------------- |
|
||||
| 1 | 14.1 | 82.8 | 25.5 | 136.7 |
|
||||
| 2 | 11.8 | 76.6 | 20.3 | 123.8 |
|
||||
| 4 | 10.9 | 73.8 | 18.1 | 117.8 |
|
||||
| 8 | 10.6 | 73.7 | 17.2 | 116.0 |
|
||||
200
docs/docs/icicle/golang-bindings/msm.md
Normal file
@@ -0,0 +1,200 @@
|
||||
# MSM
|
||||
|
||||
|
||||
### Supported curves
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn254`, `bw6-761`
|
||||
|
||||
## MSM Example
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
cr "github.com/ingonyama-zk/icicle/wrappers/golang/cuda_runtime"
|
||||
)
|
||||
|
||||
func Main() {
|
||||
// Obtain the default MSM configuration.
|
||||
cfg := GetDefaultMSMConfig()
|
||||
|
||||
// Define the size of the problem, here 2^18.
|
||||
size := 1 << 18
|
||||
|
||||
// Generate scalars and points for the MSM operation.
|
||||
scalars := GenerateScalars(size)
|
||||
points := GenerateAffinePoints(size)
|
||||
|
||||
// Create a CUDA stream for asynchronous operations.
|
||||
stream, _ := cr.CreateStream()
|
||||
var p Projective
|
||||
|
||||
// Allocate memory on the device for the result of the MSM operation.
|
||||
var out core.DeviceSlice
|
||||
_, e := out.MallocAsync(p.Size(), p.Size(), stream)
|
||||
|
||||
if e != cr.CudaSuccess {
|
||||
panic(e)
|
||||
}
|
||||
|
||||
// Set the CUDA stream in the MSM configuration.
|
||||
cfg.Ctx.Stream = &stream
|
||||
cfg.IsAsync = true
|
||||
|
||||
// Perform the MSM operation.
|
||||
e = Msm(scalars, points, &cfg, out)
|
||||
|
||||
if e != cr.CudaSuccess {
|
||||
panic(e)
|
||||
}
|
||||
|
||||
// Allocate host memory for the results and copy the results from the device.
|
||||
outHost := make(core.HostSlice[Projective], 1)
|
||||
cr.SynchronizeStream(&stream)
|
||||
outHost.CopyFromDevice(&out)
|
||||
|
||||
// Free the device memory allocated for the results.
|
||||
out.Free()
|
||||
}
|
||||
```
|
||||
|
||||
## MSM Method
|
||||
|
||||
```go
|
||||
func Msm(scalars core.HostOrDeviceSlice, points core.HostOrDeviceSlice, cfg *core.MSMConfig, results core.HostOrDeviceSlice) cr.CudaError
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- **scalars**: A slice containing the scalars for multiplication. It can reside either in host memory or device memory.
|
||||
- **points**: A slice containing the points to be multiplied with scalars. Like scalars, these can also be in host or device memory.
|
||||
- **cfg**: A pointer to an `MSMConfig` object, which contains various configuration options for the MSM operation.
|
||||
- **results**: A slice where the results of the MSM operation will be stored. This slice can be in host or device memory.
|
||||
|
||||
### Return Value
|
||||
|
||||
- **CudaError**: Returns a CUDA error code indicating the success or failure of the MSM operation.
|
||||
|
||||
## MSMConfig
|
||||
|
||||
The `MSMConfig` structure holds configuration parameters for the MSM operation, allowing customization of its behavior to optimize performance based on the specifics of the operation or the underlying hardware.
|
||||
|
||||
```go
|
||||
type MSMConfig struct {
|
||||
Ctx cr.DeviceContext
|
||||
PrecomputeFactor int32
|
||||
C int32
|
||||
Bitsize int32
|
||||
LargeBucketFactor int32
|
||||
batchSize int32
|
||||
areScalarsOnDevice bool
|
||||
AreScalarsMontgomeryForm bool
|
||||
arePointsOnDevice bool
|
||||
ArePointsMontgomeryForm bool
|
||||
areResultsOnDevice bool
|
||||
IsBigTriangle bool
|
||||
IsAsync bool
|
||||
}
|
||||
```
|
||||
|
||||
### Fields
|
||||
|
||||
- **Ctx**: Device context containing details like device id and stream.
|
||||
- **PrecomputeFactor**: Controls the number of extra points to pre-compute.
|
||||
- **C**: Window bitsize, a key parameter in the "bucket method" for MSM.
|
||||
- **Bitsize**: Number of bits of the largest scalar.
|
||||
- **LargeBucketFactor**: Sensitivity to frequently occurring buckets.
|
||||
- **batchSize**: Number of results to compute in one batch.
|
||||
- **areScalarsOnDevice**: Indicates if scalars are located on the device.
|
||||
- **AreScalarsMontgomeryForm**: True if scalars are in Montgomery form.
|
||||
- **arePointsOnDevice**: Indicates if points are located on the device.
|
||||
- **ArePointsMontgomeryForm**: True if point coordinates are in Montgomery form.
|
||||
- **areResultsOnDevice**: Indicates if results are stored on the device.
|
||||
- **IsBigTriangle**: If `true` MSM will run in Large triangle accumulation if `false` Bucket accumulation will be chosen. Default value: false.
|
||||
- **IsAsync**: If true, runs MSM asynchronously.
|
||||
|
||||
### Default Configuration
|
||||
|
||||
Use `GetDefaultMSMConfig` to obtain a default configuration, which can then be customized as needed.
|
||||
|
||||
```go
|
||||
func GetDefaultMSMConfig() MSMConfig
|
||||
```
|
||||
|
||||
|
||||
## How do I toggle between the supported algorithms?
|
||||
|
||||
When creating your MSM Config you may state which algorithm you wish to use. `cfg.Ctx.IsBigTriangle = true` will activate Large triangle accumulation and `cfg.Ctx.IsBigTriangle = false` will activate Bucket accumulation.
|
||||
|
||||
```go
|
||||
...
|
||||
|
||||
// Obtain the default MSM configuration.
|
||||
cfg := GetDefaultMSMConfig()
|
||||
|
||||
cfg.Ctx.IsBigTriangle = true
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
## How do I toggle between MSM modes?
|
||||
|
||||
Toggling between MSM modes occurs automatically based on the number of results you are expecting from the `MSM` function.
|
||||
|
||||
The number of results is interpreted from the size of `var out core.DeviceSlice`. Thus its important when allocating memory for `var out core.DeviceSlice` to make sure that you are allocating `<number of results> X <size of a single point>`.
|
||||
|
||||
```go
|
||||
...
|
||||
|
||||
batchSize := 3
|
||||
var p G2Projective
|
||||
var out core.DeviceSlice
|
||||
out.Malloc(batchSize*p.Size(), p.Size())
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
## Support for G2 group
|
||||
|
||||
To activate G2 support first you must make sure you are building the static libraries with G2 feature enabled.
|
||||
|
||||
```bash
|
||||
./build.sh bls12_381 ON
|
||||
```
|
||||
|
||||
Now when importing `icicle`, you should have access to G2 features.
|
||||
|
||||
```go
|
||||
import (
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
)
|
||||
```
|
||||
|
||||
These features include `G2Projective` and `G2Affine` points as well as a `G2Msm` method.
|
||||
|
||||
```go
|
||||
...
|
||||
|
||||
cfg := GetDefaultMSMConfig()
|
||||
size := 1 << 12
|
||||
batchSize := 3
|
||||
totalSize := size * batchSize
|
||||
scalars := GenerateScalars(totalSize)
|
||||
points := G2GenerateAffinePoints(totalSize)
|
||||
|
||||
var p G2Projective
|
||||
var out core.DeviceSlice
|
||||
out.Malloc(batchSize*p.Size(), p.Size())
|
||||
G2Msm(scalars, points, &cfg, out)
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
`G2Msm` works the same way as normal MSM, the difference is that it uses G2 Points.
|
||||
|
||||
Additionally when you are building your application make sure to use the g2 feature flag
|
||||
|
||||
```bash
|
||||
go build -tags=g2
|
||||
```
|
||||
139
docs/docs/icicle/golang-bindings/multi-gpu.md
Normal file
@@ -0,0 +1,139 @@
|
||||
# Multi GPU APIs
|
||||
|
||||
To learn more about the theory of Multi GPU programming refer to [this part](../multi-gpu.md) of documentation.
|
||||
|
||||
Here we will cover the core multi GPU apis and a [example](#a-multi-gpu-example)
|
||||
|
||||
|
||||
## A Multi GPU example
|
||||
|
||||
In this example we will display how you can
|
||||
|
||||
1. Fetch the number of devices installed on a machine
|
||||
2. For every GPU launch a thread and set an active device per thread.
|
||||
3. Execute a MSM on each GPU
|
||||
|
||||
|
||||
```go
|
||||
func main() {
|
||||
numDevices, _ := cuda_runtime.GetDeviceCount()
|
||||
fmt.Println("There are ", numDevices, " devices available")
|
||||
wg := sync.WaitGroup{}
|
||||
|
||||
for i := 0; i < numDevices; i++ {
|
||||
wg.Add(1)
|
||||
// RunOnDevice makes sure each MSM runs on a single thread
|
||||
cuda_runtime.RunOnDevice(i, func(args ...any) {
|
||||
defer wg.Done()
|
||||
cfg := GetDefaultMSMConfig()
|
||||
cfg.IsAsync = true
|
||||
for _, power := range []int{10, 18} {
|
||||
size := 1 << power // 2^pwr
|
||||
|
||||
// generate random scalars
|
||||
scalars := GenerateScalars(size)
|
||||
points := GenerateAffinePoints(size)
|
||||
|
||||
// create a stream and allocate result pointer
|
||||
stream, _ := cuda_runtime.CreateStream()
|
||||
var p Projective
|
||||
var out core.DeviceSlice
|
||||
_, e := out.MallocAsync(p.Size(), p.Size(), stream)
|
||||
// assign stream to device context
|
||||
cfg.Ctx.Stream = &stream
|
||||
|
||||
// execute MSM
|
||||
e = Msm(scalars, points, &cfg, out)
|
||||
// read result from device
|
||||
outHost := make(core.HostSlice[Projective], 1)
|
||||
outHost.CopyFromDeviceAsync(&out, stream)
|
||||
out.FreeAsync(stream)
|
||||
|
||||
// sync the stream
|
||||
cr.SynchronizeStream(&stream)
|
||||
}
|
||||
})
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
```
|
||||
|
||||
This example demonstrates a basic pattern for distributing tasks across multiple GPUs. The `RunOnDevice` function ensures that each goroutine is executed on its designated GPU and a corresponding thread.
|
||||
|
||||
## Device Management API
|
||||
|
||||
To streamline device management we offer as part of `cuda_runtime` package methods for dealing with devices.
|
||||
|
||||
### `RunOnDevice`
|
||||
|
||||
Runs a given function on a specific GPU device, ensuring that all CUDA calls within the function are executed on the selected device.
|
||||
|
||||
In Go, most concurrency can be done via Goroutines. However, there is no guarantee that a goroutine stays on a specific host thread.
|
||||
|
||||
`RunOnDevice` was designed to solve this caveat and insure that the goroutine will stay on a specific host thread.
|
||||
|
||||
`RunOnDevice` will lock a goroutine into a specific host thread, sets a current GPU device, runs a provided function, and unlocks the goroutine from the host thread after the provided function finishes.
|
||||
|
||||
While the goroutine is locked to the host thread, the Go runtime will not assign other goroutine's to that host thread.
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- `deviceId int`: The ID of the device on which to run the provided function. Device IDs start from 0.
|
||||
- `funcToRun func(args ...any)`: The function to be executed on the specified device.
|
||||
- `args ...any`: Arguments to be passed to `funcToRun`.
|
||||
|
||||
**Behavior:**
|
||||
|
||||
- The function `funcToRun` is executed in a new goroutine that is locked to a specific OS thread to ensure that all CUDA calls within the function target the specified device.
|
||||
- It's important to note that any goroutines launched within `funcToRun` are not automatically bound to the same GPU device. If necessary, `RunOnDevice` should be called again within such goroutines with the same `deviceId`.
|
||||
|
||||
**Example:**
|
||||
|
||||
```go
|
||||
RunOnDevice(0, func(args ...any) {
|
||||
fmt.Println("This runs on GPU 0")
|
||||
// CUDA-related operations here will target GPU 0
|
||||
}, nil)
|
||||
```
|
||||
|
||||
### `SetDevice`
|
||||
|
||||
Sets the active device for the current host thread. All subsequent CUDA calls made from this thread will target the specified device.
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- `device int`: The ID of the device to set as the current device.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `CudaError`: Error code indicating the success or failure of the operation.
|
||||
|
||||
### `GetDeviceCount`
|
||||
|
||||
Retrieves the number of CUDA-capable devices available on the host.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `(int, CudaError)`: The number of devices and an error code indicating the success or failure of the operation.
|
||||
|
||||
### `GetDevice`
|
||||
|
||||
Gets the ID of the currently active device for the calling host thread.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `(int, CudaError)`: The ID of the current device and an error code indicating the success or failure of the operation.
|
||||
|
||||
### `GetDeviceFromPointer`
|
||||
|
||||
Retrieves the device associated with a given pointer.
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- `ptr unsafe.Pointer`: Pointer to query.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `int`: The device ID associated with the memory pointed to by `ptr`.
|
||||
|
||||
This documentation should provide a clear understanding of how to effectively manage multiple GPUs in Go applications using CUDA, with a particular emphasis on the `RunOnDevice` function for executing tasks on specific GPUs.
|
||||
104
docs/docs/icicle/golang-bindings/ntt.md
Normal file
@@ -0,0 +1,104 @@
|
||||
# NTT
|
||||
|
||||
### Supported curves
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn254`, `bw6-761`
|
||||
|
||||
## NTT Example
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
cr "github.com/ingonyama-zk/icicle/wrappers/golang/cuda_runtime"
|
||||
)
|
||||
|
||||
func Main() {
|
||||
// Obtain the default NTT configuration with a predefined coset generator.
|
||||
cfg := GetDefaultNttConfig()
|
||||
|
||||
// Define the size of the input scalars.
|
||||
size := 1 << 18
|
||||
|
||||
// Generate scalars for the NTT operation.
|
||||
scalars := GenerateScalars(size)
|
||||
|
||||
// Set the direction of the NTT (forward or inverse).
|
||||
dir := core.KForward
|
||||
|
||||
// Allocate memory for the results of the NTT operation.
|
||||
results := make(core.HostSlice[ScalarField], size)
|
||||
|
||||
// Perform the NTT operation.
|
||||
err := Ntt(scalars, dir, &cfg, results)
|
||||
if err != cr.CudaSuccess {
|
||||
panic("NTT operation failed")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## NTT Method
|
||||
|
||||
```go
|
||||
func Ntt[T any](scalars core.HostOrDeviceSlice, dir core.NTTDir, cfg *core.NTTConfig[T], results core.HostOrDeviceSlice) core.IcicleError
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- **scalars**: A slice containing the input scalars for the transform. It can reside either in host memory or device memory.
|
||||
- **dir**: The direction of the NTT operation (`KForward` or `KInverse`).
|
||||
- **cfg**: A pointer to an `NTTConfig` object, containing configuration options for the NTT operation.
|
||||
- **results**: A slice where the results of the NTT operation will be stored. This slice can be in host or device memory.
|
||||
|
||||
### Return Value
|
||||
|
||||
- **CudaError**: Returns a CUDA error code indicating the success or failure of the NTT operation.
|
||||
|
||||
## NTT Configuration (NTTConfig)
|
||||
|
||||
The `NTTConfig` structure holds configuration parameters for the NTT operation, allowing customization of its behavior to optimize performance based on the specifics of your protocol.
|
||||
|
||||
```go
|
||||
type NTTConfig[T any] struct {
|
||||
Ctx cr.DeviceContext
|
||||
CosetGen T
|
||||
BatchSize int32
|
||||
ColumnsBatch bool
|
||||
Ordering Ordering
|
||||
areInputsOnDevice bool
|
||||
areOutputsOnDevice bool
|
||||
IsAsync bool
|
||||
NttAlgorithm NttAlgorithm
|
||||
}
|
||||
```
|
||||
|
||||
### Fields
|
||||
|
||||
- **Ctx**: Device context containing details like device ID and stream ID.
|
||||
- **CosetGen**: Coset generator used for coset (i)NTTs, defaulting to no coset being used.
|
||||
- **BatchSize**: The number of NTTs to compute in one operation, defaulting to 1.
|
||||
- **ColumnsBatch**: If true the function will compute the NTTs over the columns of the input matrix and not over the rows. Defaults to `false`.
|
||||
- **Ordering**: Ordering of inputs and outputs (`KNN`, `KNR`, `KRN`, `KRR`, `KMN`, `KNM`), affecting how data is arranged.
|
||||
- **areInputsOnDevice**: Indicates if input scalars are located on the device.
|
||||
- **areOutputsOnDevice**: Indicates if results are stored on the device.
|
||||
- **IsAsync**: Controls whether the NTT operation runs asynchronously.
|
||||
- **NttAlgorithm**: Explicitly select the NTT algorithm. Default value: Auto (the implementation selects radix-2 or mixed-radix algorithm based on heuristics).
|
||||
|
||||
### Default Configuration
|
||||
|
||||
Use `GetDefaultNTTConfig` to obtain a default configuration, customizable as needed.
|
||||
|
||||
```go
|
||||
func GetDefaultNTTConfig[T any](cosetGen T) NTTConfig[T]
|
||||
```
|
||||
|
||||
### Initializing the NTT Domain
|
||||
|
||||
Before performing NTT operations, it's necessary to initialize the NTT domain; it only needs to be called once per GPU since the twiddles are cached.
|
||||
|
||||
```go
|
||||
func InitDomain(primitiveRoot ScalarField, ctx cr.DeviceContext, fastTwiddles bool) core.IcicleError
|
||||
```
|
||||
|
||||
This function initializes the domain with a given primitive root, optionally using fast twiddle factors to optimize the computation.
|
||||
132
docs/docs/icicle/golang-bindings/vec-ops.md
Normal file
@@ -0,0 +1,132 @@
|
||||
# Vector Operations
|
||||
|
||||
## Overview
|
||||
|
||||
The VecOps API provides efficient vector operations such as addition, subtraction, and multiplication.
|
||||
|
||||
## Example
|
||||
|
||||
### Vector addition
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
cr "github.com/ingonyama-zk/icicle/wrappers/golang/cuda_runtime"
|
||||
)
|
||||
|
||||
func main() {
|
||||
testSize := 1 << 12
|
||||
a := GenerateScalars(testSize)
|
||||
b := GenerateScalars(testSize)
|
||||
out := make(core.HostSlice[ScalarField], testSize)
|
||||
cfg := core.DefaultVecOpsConfig()
|
||||
|
||||
// Perform vector addition
|
||||
err := VecOp(a, b, out, cfg, core.Add)
|
||||
if err != cr.CudaSuccess {
|
||||
panic("Vector addition failed")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Vector Subtraction
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
cr "github.com/ingonyama-zk/icicle/wrappers/golang/cuda_runtime"
|
||||
)
|
||||
|
||||
func main() {
|
||||
testSize := 1 << 12
|
||||
a := GenerateScalars(testSize)
|
||||
b := GenerateScalars(testSize)
|
||||
out := make(core.HostSlice[ScalarField], testSize)
|
||||
cfg := core.DefaultVecOpsConfig()
|
||||
|
||||
// Perform vector subtraction
|
||||
err := VecOp(a, b, out, cfg, core.Sub)
|
||||
if err != cr.CudaSuccess {
|
||||
panic("Vector subtraction failed")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Vector Multiplication
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"github.com/ingonyama-zk/icicle/wrappers/golang/core"
|
||||
cr "github.com/ingonyama-zk/icicle/wrappers/golang/cuda_runtime"
|
||||
)
|
||||
|
||||
func main() {
|
||||
testSize := 1 << 12
|
||||
a := GenerateScalars(testSize)
|
||||
b := GenerateScalars(testSize)
|
||||
out := make(core.HostSlice[ScalarField], testSize)
|
||||
cfg := core.DefaultVecOpsConfig()
|
||||
|
||||
// Perform vector multiplication
|
||||
err := VecOp(a, b, out, cfg, core.Mul)
|
||||
if err != cr.CudaSuccess {
|
||||
panic("Vector multiplication failed")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## VecOps Method
|
||||
|
||||
```go
|
||||
func VecOp(a, b, out core.HostOrDeviceSlice, config core.VecOpsConfig, op core.VecOps) (ret cr.CudaError)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- **a**: The first input vector.
|
||||
- **b**: The second input vector.
|
||||
- **out**: The output vector where the result of the operation will be stored.
|
||||
- **config**: A `VecOpsConfig` object containing various configuration options for the vector operations.
|
||||
- **op**: The operation to perform, specified as one of the constants (`Sub`, `Add`, `Mul`) from the `VecOps` type.
|
||||
|
||||
### Return Value
|
||||
|
||||
- **CudaError**: Returns a CUDA error code indicating the success or failure of the vector operation.
|
||||
|
||||
## VecOpsConfig
|
||||
|
||||
The `VecOpsConfig` structure holds configuration parameters for the vector operations, allowing customization of its behavior.
|
||||
|
||||
```go
|
||||
type VecOpsConfig struct {
|
||||
Ctx cr.DeviceContext
|
||||
isAOnDevice bool
|
||||
isBOnDevice bool
|
||||
isResultOnDevice bool
|
||||
IsResultMontgomeryForm bool
|
||||
IsAsync bool
|
||||
}
|
||||
```
|
||||
|
||||
### Fields
|
||||
|
||||
- **Ctx**: Device context containing details like device ID and stream ID.
|
||||
- **isAOnDevice**: Indicates if vector `a` is located on the device.
|
||||
- **isBOnDevice**: Indicates if vector `b` is located on the device.
|
||||
- **isResultOnDevice**: Specifies where the result vector should be stored (device or host memory).
|
||||
- **IsResultMontgomeryForm**: Determines if the result vector should be in Montgomery form.
|
||||
- **IsAsync**: Controls whether the vector operation runs asynchronously.
|
||||
|
||||
### Default Configuration
|
||||
|
||||
Use `DefaultVecOpsConfig` to obtain a default configuration, customizable as needed.
|
||||
|
||||
```go
|
||||
func DefaultVecOpsConfig() VecOpsConfig
|
||||
```
|
||||
BIN
docs/docs/icicle/image.png
Normal file
|
After Width: | Height: | Size: 35 KiB |
97
docs/docs/icicle/integrations.md
Normal file
@@ -0,0 +1,97 @@
|
||||
# ICICLE integrated provers
|
||||
|
||||
ICICLE has been used by companies and projects such as [Celer Network](https://github.com/celer-network), [Consensys Gnark](https://github.com/Consensys/gnark), [EZKL](https://blog.ezkl.xyz/post/acceleration/) and others to accelerate their ZK proving pipeline.
|
||||
|
||||
Many of these integrations have been a collaboration between Ingonyama and the integrating company. We have learned a lot about designing GPU based ZK provers.
|
||||
|
||||
If you're interested in understanding these integrations better or learning how you can use ICICLE to accelerate your existing ZK proving pipeline this is the place for you.
|
||||
|
||||
## A primer to building your own integrations
|
||||
|
||||
Lets illustrate an ICICLE integration, so you can understand the core API and design overview of ICICLE.
|
||||
|
||||

|
||||
|
||||
Engineers usually use a cryptographic library to implement their ZK protocols. These libraries implement efficient primitives which are used as building blocks for the protocol; ICICLE is such a library. The difference is that ICICLE is designed from the start to run on GPUs; the Rust and Golang APIs abstract away all low level CUDA details. Our goal was to allow developers with no GPU experience to quickly get started with ICICLE.
|
||||
|
||||
A developer may use ICICLE with two main approaches in mind.
|
||||
|
||||
1. Drop-in replacement approach.
|
||||
2. End-to-End GPU replacement approach.
|
||||
|
||||
The first approach for GPU-accelerating your Prover with ICICLE is quick to implement, but it has limitations, such as reduced memory optimization and limited protocol tuning for GPUs. It's a solid starting point, but those committed to fully leveraging GPU acceleration should consider a more comprehensive approach.
|
||||
|
||||
A End-to-End GPU replacement means performing the entire ZK proof on the GPU. This approach will reduce latency to a minimum and requires you to change the way you implement the protocol to be more GPU friendly. This approach will take full advantage of GPU acceleration. Redesigning your prover this way may take more engineering effort but we promise you that its worth it!
|
||||
|
||||
## Using ICICLE integrated provers
|
||||
|
||||
Here we cover how a developer can run existing circuits on ICICLE integrated provers.
|
||||
|
||||
### Gnark
|
||||
|
||||
[Gnark](https://github.com/Consensys/gnark) officially supports GPU proving with ICICLE. Currently only Groth16 on curve `BN254` is supported. This means that if you are currently using Gnark to write your circuits you can enjoy GPU acceleration without making many changes.
|
||||
|
||||
:::info
|
||||
|
||||
Currently ICICLE has been merged to Gnark [master branch](https://github.com/Consensys/gnark), however the [latest release](https://github.com/Consensys/gnark/releases/tag/v0.9.1) is from October 2023.
|
||||
|
||||
:::
|
||||
|
||||
Make sure your golang circuit project has `gnark` as a dependency and that you are using the master branch for now.
|
||||
|
||||
```
|
||||
go get github.com/consensys/gnark@master
|
||||
```
|
||||
|
||||
You should see two indirect dependencies added.
|
||||
|
||||
```
|
||||
...
|
||||
github.com/ingonyama-zk/icicle v0.1.0 // indirect
|
||||
github.com/ingonyama-zk/iciclegnark v0.1.1 // indirect
|
||||
...
|
||||
```
|
||||
|
||||
:::info
|
||||
As you may notice we are using ICICLE v0.1 here since golang bindings are only support in ICICLE v0.1 for the time being.
|
||||
:::
|
||||
|
||||
To switch over to ICICLE proving, make sure to change the backend you are using, below is an example of how this should be done.
|
||||
|
||||
```
|
||||
// toggle on
|
||||
proofIci, err := groth16.Prove(ccs, pk, secretWitness, backend.WithIcicleAcceleration())
|
||||
|
||||
// toggle off
|
||||
proof, err := groth16.Prove(ccs, pk, secretWitness)
|
||||
```
|
||||
|
||||
Now that you have enabled `WithIcicleAcceleration` backend simple change the way your run your circuits to:
|
||||
|
||||
```
|
||||
go run -tags=icicle main.go
|
||||
```
|
||||
|
||||
Your logs should look something like this if everything went as expected.
|
||||
|
||||
```
|
||||
13:12:05 INF compiling circuit
|
||||
13:12:05 INF parsed circuit inputs nbPublic=1 nbSecret=1
|
||||
13:12:05 INF building constraint builder nbConstraints=3
|
||||
13:12:05 DBG precomputing proving key in GPU acceleration=icicle backend=groth16 curve=bn254 nbConstraints=3
|
||||
13:12:05 DBG constraint system solver done nbConstraints=3 took=0.070259
|
||||
13:12:05 DBG prover done acceleration=icicle backend=groth16 curve=bn254 nbConstraints=3 took=80.356684
|
||||
13:12:05 DBG verifier done backend=groth16 curve=bn254 took=1.843888
|
||||
```
|
||||
|
||||
`acceleration=icicle` indicates that the prover is running in acceleration mode with ICICLE.
|
||||
|
||||
You can reference the [Gnark docs](https://github.com/Consensys/gnark?tab=readme-ov-file#gpu-support) for further information.
|
||||
|
||||
### Halo2
|
||||
|
||||
[Halo2](https://github.com/zkonduit/halo2) fork integrated with ICICLE for GPU acceleration. This means that you can run your existing Halo2 circuits with GPU acceleration just by activating a feature flag.
|
||||
|
||||
To enable GPU acceleration just enable `icicle_gpu` [feature flag](https://github.com/zkonduit/halo2/blob/3d7b5e61b3052680ccb279e05bdcc21dd8a8fedf/halo2_proofs/Cargo.toml#L102).
|
||||
|
||||
This feature flag will seamlessly toggle on GPU acceleration for you.
|
||||
260
docs/docs/icicle/introduction.md
Normal file
@@ -0,0 +1,260 @@
|
||||
# Getting started with ICICLE
|
||||
|
||||
This guide is oriented towards developers who want to start writing code with the ICICLE libraries. If you just want to run your existing ZK circuits on GPU refer to [this guide](./integrations.md#using-icicle-integrations) please.
|
||||
|
||||
## ICICLE repository overview
|
||||
|
||||

|
||||
|
||||
The diagram above displays the general architecture of ICICLE and the API layers that exist. The CUDA API, which we also call ICICLE Core, is the lowest level and is comprised of CUDA kernels which implement all primitives such as MSM as well as C++ wrappers which expose these methods for different curves.
|
||||
|
||||
ICICLE Core compiles into a static library. This library can be used with our official Golang and Rust wrappers or you can implement a wrapper for it in any language.
|
||||
|
||||
Based on this dependency architecture, the ICICLE repository has three main sections, each of which is independent from the other.
|
||||
|
||||
- ICICLE core
|
||||
- ICICLE Rust bindings
|
||||
- ICICLE Golang bindings
|
||||
|
||||
### ICICLE Core
|
||||
|
||||
[ICICLE core](https://github.com/ingonyama-zk/icicle/tree/main/icicle) contains all the low level CUDA code implementing primitives such as [points](https://github.com/ingonyama-zk/icicle/tree/main/icicle/primitives) and [MSM](https://github.com/ingonyama-zk/icicle/tree/main/icicle/appUtils/msm). There also exists higher level C++ wrappers to expose the low level CUDA primitives ([example](https://github.com/ingonyama-zk/icicle/blob/c1a32a9879a7612916e05aa3098f76144de4109e/icicle/appUtils/msm/msm.cu#L1)).
|
||||
|
||||
ICICLE Core would typically be compiled into a static library and used in a third party language such as Rust or Golang.
|
||||
|
||||
### ICICLE Rust and Golang bindings
|
||||
|
||||
- [ICICLE Rust bindings](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/rust)
|
||||
- [ICICLE Golang bindings](https://github.com/ingonyama-zk/icicle/tree/main/goicicle)
|
||||
|
||||
These bindings allow you to easily use ICICLE in a Rust or Golang project. Setting up Golang bindings requires a bit of extra steps compared to the Rust bindings which utilize the `cargo build` tool.
|
||||
|
||||
## Running ICICLE
|
||||
|
||||
This guide assumes that you have a Linux or Windows machine with an Nvidia GPU installed. If you don't have access to an Nvidia GPU you can access one for free on [Google Colab](https://colab.google/).
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- NVCC (version 12.0 or newer)
|
||||
- cmake 3.18 and above
|
||||
- GCC - version 9 or newer is recommended.
|
||||
- Any Nvidia GPU
|
||||
- Linux or Windows operating system.
|
||||
|
||||
#### Optional Prerequisites
|
||||
|
||||
- Docker, latest version.
|
||||
- [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html)
|
||||
|
||||
If you don't wish to install these prerequisites you can follow this tutorial using a [ZK-Container](https://github.com/ingonyama-zk/icicle/blob/main/Dockerfile) (docker container). To learn more about using ZK-Containers [read this](../ZKContainers.md).
|
||||
|
||||
### Setting up ICICLE and running tests
|
||||
|
||||
The objective of this guide is to make sure you can run the ICICLE Core, Rust and Golang tests. Achieving this will ensure you know how to setup ICICLE and run a ICICLE program. For simplicity, we will be using the ICICLE docker container as our environment, however, you may install the prerequisites on your machine and follow the same commands in your terminal.
|
||||
|
||||
#### Setting up our environment
|
||||
|
||||
Lets begin by cloning the ICICLE repository:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/ingonyama-zk/icicle
|
||||
```
|
||||
|
||||
We will proceed to build the docker image [found here](https://github.com/ingonyama-zk/icicle/blob/main/Dockerfile):
|
||||
|
||||
```sh
|
||||
docker build -t icicle-demo .
|
||||
docker run -it --runtime=nvidia --gpus all --name icicle_container icicle-demo
|
||||
```
|
||||
|
||||
- `-it` runs the container in interactive mode with a terminal.
|
||||
- `--gpus all` Allocate all available GPUs to the container. You can also specify which GPUs to use if you don't want to allocate all.
|
||||
- `--runtime=nvidia` Use the NVIDIA runtime, necessary for GPU support.
|
||||
|
||||
To read more about these settings reference this [article](https://developer.nvidia.com/nvidia-container-runtime).
|
||||
|
||||
If you accidentally close your terminal and want to reconnect just call:
|
||||
|
||||
```sh
|
||||
docker exec -it icicle_container bash
|
||||
```
|
||||
|
||||
Lets make sure that we have the correct CUDA version before proceeding
|
||||
|
||||
```sh
|
||||
nvcc --version
|
||||
```
|
||||
|
||||
You should see something like this
|
||||
|
||||
```sh
|
||||
nvcc: NVIDIA (R) Cuda compiler driver
|
||||
Copyright (c) 2005-2023 NVIDIA Corporation
|
||||
Built on Tue_Aug_15_22:02:13_PDT_2023
|
||||
Cuda compilation tools, release 12.2, V12.2.140
|
||||
Build cuda_12.2.r12.2/compiler.33191640_0
|
||||
```
|
||||
|
||||
Make sure the release version is at least 12.0.
|
||||
|
||||
#### ICICLE Core
|
||||
|
||||
ICICLE Core is found under [`<project_root>/icicle`](https://github.com/ingonyama-zk/icicle/tree/main/icicle). To build and run the tests first:
|
||||
|
||||
```sh
|
||||
cd icicle
|
||||
```
|
||||
|
||||
We are going to compile ICICLE for a specific curve
|
||||
|
||||
```sh
|
||||
mkdir -p build
|
||||
cmake -S . -B build -DCURVE=bn254 -DBUILD_TESTS=ON
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
`-DBUILD_TESTS=ON` compiles the tests, without this flag `ctest` won't work.
|
||||
`-DCURVE=bn254` tells the compiler which curve to build. You can find a list of supported curves [here](https://github.com/ingonyama-zk/icicle/tree/main/icicle/curves).
|
||||
|
||||
The output in `build` folder should include the static libraries for the compiled curve.
|
||||
|
||||
:::info
|
||||
|
||||
Make sure to only use `-DBUILD_TESTS=ON` for running tests as the archive output will only be available when `-DBUILD_TESTS=ON` is not supplied.
|
||||
|
||||
:::
|
||||
|
||||
To run the test
|
||||
|
||||
```sh
|
||||
cd build
|
||||
ctest
|
||||
```
|
||||
|
||||
#### ICICLE Rust
|
||||
|
||||
The rust bindings work by first compiling the CUDA static libraries as seen [here](https://github.com/ingonyama-zk/icicle/blob/main/wrappers/rust/icicle-curves/icicle-bn254/build.rs). The compilation of CUDA and the Rust library is all handled by the rust build toolchain.
|
||||
|
||||
Similar to ICICLE Core here we also have to compile per curve.
|
||||
|
||||
Lets compile curve `bn254`
|
||||
|
||||
```sh
|
||||
cd wrappers/rust/icicle-curves/icicle-bn254
|
||||
```
|
||||
|
||||
Now lets build our library
|
||||
|
||||
```sh
|
||||
cargo build --release
|
||||
```
|
||||
|
||||
This may take a couple of minutes since we are compiling both the CUDA and Rust code.
|
||||
|
||||
To run the tests
|
||||
|
||||
```sh
|
||||
cargo test
|
||||
```
|
||||
|
||||
We also include some benchmarks
|
||||
|
||||
```sh
|
||||
cargo bench
|
||||
```
|
||||
|
||||
#### ICICLE Golang
|
||||
|
||||
Golang is WIP in v1, coming soon. Please checkout a previous [release v0.1.0](https://github.com/ingonyama-zk/icicle/releases/tag/v0.1.0) for golang bindings.
|
||||
|
||||
### Running ICICLE examples
|
||||
|
||||
ICICLE examples can be found [here](https://github.com/ingonyama-zk/icicle-examples) these examples cover some simple use cases using C++, rust and golang.
|
||||
|
||||
In each example directory, ZK-container files are located in a subdirectory `.devcontainer`.
|
||||
|
||||
```sh
|
||||
msm/
|
||||
├── .devcontainer
|
||||
├── devcontainer.json
|
||||
└── Dockerfile
|
||||
```
|
||||
|
||||
Lets run one of our C++ examples, in this case the [MSM example](https://github.com/ingonyama-zk/icicle-examples/blob/main/c%2B%2B/msm/example.cu).
|
||||
|
||||
Clone the repository
|
||||
|
||||
```sh
|
||||
git clone https://github.com/ingonyama-zk/icicle-examples.git
|
||||
cd icicle-examples
|
||||
```
|
||||
|
||||
Enter the test directory
|
||||
|
||||
```sh
|
||||
cd c++/msm
|
||||
```
|
||||
|
||||
Now lets build our docker file and run the test inside it. Make sure you have installed the [optional prerequisites](#optional-prerequisites).
|
||||
|
||||
```sh
|
||||
docker build -t icicle-example-msm -f .devcontainer/Dockerfile .
|
||||
```
|
||||
|
||||
Lets start and enter the container
|
||||
|
||||
```sh
|
||||
docker run -it --rm --gpus all -v .:/icicle-example icicle-example-msm
|
||||
```
|
||||
|
||||
to run the example
|
||||
|
||||
```sh
|
||||
rm -rf build
|
||||
mkdir -p build
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
./build/example
|
||||
```
|
||||
|
||||
You can now experiment with our other examples, perhaps try to run a rust or golang example next.
|
||||
|
||||
## Writing new bindings for ICICLE
|
||||
|
||||
Since ICICLE Core is written in CUDA / C++ its really simple to generate static libraries. These static libraries can be installed on any system and called by higher level languages such as Golang.
|
||||
|
||||
static libraries can be loaded into memory once and used by multiple programs, reducing memory usage and potentially improving performance. They also allow you to separate functionality into distinct modules so your static library may need to compile only specific features that you want to use.
|
||||
|
||||
Lets review the Golang bindings since its a pretty verbose example (compared to rust which hides it pretty well) of using static libraries. Golang has a library named `CGO` which can be used to link static libraries. Here's a basic example on how you can use cgo to link these libraries:
|
||||
|
||||
```go
|
||||
/*
|
||||
#cgo LDFLAGS: -L/path/to/shared/libs -lbn254 -lbls12_381 -lbls12_377 -lbw6_671
|
||||
#include "icicle.h" // make sure you use the correct header file(s)
|
||||
*/
|
||||
import "C"
|
||||
|
||||
func main() {
|
||||
// Now you can call the C functions from the ICICLE libraries.
|
||||
// Note that C function calls are prefixed with 'C.' in Go code.
|
||||
|
||||
out := (*C.BN254_projective_t)(unsafe.Pointer(p))
|
||||
in := (*C.BN254_affine_t)(unsafe.Pointer(affine))
|
||||
|
||||
C.projective_from_affine_bn254(out, in)
|
||||
}
|
||||
```
|
||||
|
||||
The comments on the first line tell `CGO` which libraries to import as well as which header files to include. You can then call methods which are part of the static library and defined in the header file, `C.projective_from_affine_bn254` is an example.
|
||||
|
||||
If you wish to create your own bindings for a language of your choice we suggest you start by investigating how you can call static libraries.
|
||||
|
||||
### ICICLE Adapters
|
||||
|
||||
One of the core ideas behind ICICLE is that developers can gradually accelerate their provers. Many protocols are written using other cryptographic libraries and completely replacing them may be complex and time consuming.
|
||||
|
||||
Therefore we offer adapters for various popular libraries, these adapters allow us to convert points and scalars between different formats defined by various libraries. Here is a list:
|
||||
|
||||
Golang adapters:
|
||||
|
||||
- [Gnark crypto adapter](https://github.com/ingonyama-zk/iciclegnark)
|
||||
64
docs/docs/icicle/multi-gpu.md
Normal file
@@ -0,0 +1,64 @@
|
||||
# Multi GPU with ICICLE
|
||||
|
||||
:::info
|
||||
|
||||
If you are looking for the Multi GPU API documentation refer here for [Rust](./rust-bindings/multi-gpu.md).
|
||||
|
||||
:::
|
||||
|
||||
One common challenge with Zero-Knowledge computation is managing the large input sizes. It's not uncommon to encounter circuits surpassing 2^25 constraints, pushing the capabilities of even advanced GPUs to their limits. To effectively scale and process such large circuits, leveraging multiple GPUs in tandem becomes a necessity.
|
||||
|
||||
Multi-GPU programming involves developing software to operate across multiple GPU devices. Lets first explore different approaches to Multi-GPU programming then we will cover how ICICLE allows you to easily develop youR ZK computations to run across many GPUs.
|
||||
|
||||
|
||||
## Approaches to Multi GPU programming
|
||||
|
||||
There are many [different strategies](https://github.com/NVIDIA/multi-gpu-programming-models) available for implementing multi GPU, however, it can be split into two categories.
|
||||
|
||||
### GPU Server approach
|
||||
|
||||
This approach usually involves a single or multiple CPUs opening threads to read / write from multiple GPUs. You can think about it as a scaled up HOST - Device model.
|
||||
|
||||

|
||||
|
||||
This approach won't let us tackle larger computation sizes but it will allow us to compute multiple computations which we wouldn't be able to load onto a single GPU.
|
||||
|
||||
For example let's say that you had to compute two MSMs of size 2^26 on a 16GB VRAM GPU you would normally have to perform them asynchronously. However, if you double the number of GPUs in your system you can now run them in parallel.
|
||||
|
||||
|
||||
### Inter GPU approach
|
||||
|
||||
This approach involves a more sophisticated approach to multi GPU computation. Using technologies such as [GPUDirect, NCCL, NVSHMEM](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-cwes1084/) and NVLink it's possible to combine multiple GPUs and split a computation among different devices.
|
||||
|
||||
This approach requires redesigning the algorithm at the software level to be compatible with splitting amongst devices. In some cases, to lower latency to a minimum, special inter GPU connections would be installed on a server to allow direct communication between multiple GPUs.
|
||||
|
||||
|
||||
# Writing ICICLE Code for Multi GPUs
|
||||
|
||||
The approach we have taken for the moment is a GPU Server approach; we assume you have a machine with multiple GPUs and you wish to run some computation on each GPU.
|
||||
|
||||
To dive deeper and learn about the API check out the docs for our different ICICLE API
|
||||
|
||||
- [Rust Multi GPU APIs](./rust-bindings/multi-gpu.md)
|
||||
- C++ Multi GPU APIs
|
||||
|
||||
|
||||
## Best practices
|
||||
|
||||
- Never hardcode device IDs, if you want your software to take advantage of all GPUs on a machine use methods such as `get_device_count` to support arbitrary number of GPUs.
|
||||
|
||||
- Launch one CPU thread per GPU. To avoid [nasty errors](https://developer.nvidia.com/blog/cuda-pro-tip-always-set-current-device-avoid-multithreading-bugs/) and hard to read code we suggest that for every GPU you create a dedicated thread. Within a CPU thread you should be able to launch as many tasks as you wish for a GPU as long as they all run on the same GPU id. This will make your code way more manageable, easy to read and performant.
|
||||
|
||||
## ZKContainer support for multi GPUs
|
||||
|
||||
Multi GPU support should work with ZK-Containers by simply defining which devices the docker container should interact with:
|
||||
|
||||
```sh
|
||||
docker run -it --gpus '"device=0,2"' zk-container-image
|
||||
```
|
||||
|
||||
If you wish to expose all GPUs
|
||||
|
||||
```sh
|
||||
docker run --gpus all zk-container-image
|
||||
```
|
||||
64
docs/docs/icicle/overview.md
Normal file
@@ -0,0 +1,64 @@
|
||||
# What is ICICLE?
|
||||
|
||||
[](https://github.com/ingonyama-zk/icicle/releases)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[ICICLE](https://github.com/ingonyama-zk/icicle) is a cryptography library for ZK using GPUs. ICICLE implements blazing fast cryptographic primitives such as EC operations, MSM, NTT, Poseidon hash and more on GPU.
|
||||
|
||||
ICICLE allows developers with minimal GPU experience to effortlessly accelerate their ZK application; from our experiments, even the most naive implementation may yield 10X improvement in proving times.
|
||||
|
||||
ICICLE has been used by many leading ZK companies such as [Celer Network](https://github.com/celer-network), [Gnark](https://github.com/Consensys/gnark) and others to accelerate their ZK proving pipeline.
|
||||
|
||||
## Dont have access to a GPU?
|
||||
|
||||
We understand that not all developers have access to a GPU and we don't want this to limit anyone from developing with ICICLE.
|
||||
Here are some ways we can help you gain access to GPUs:
|
||||
|
||||
### Grants
|
||||
|
||||
At Ingonyama we are interested in accelerating the progress of ZK and cryptography. If you are an engineer, developer or an academic researcher we invite you to checkout [our grant program](https://www.ingonyama.com/blog/icicle-for-researchers-grants-challenges). We will give you access to GPUs and even pay you to do your dream research!
|
||||
|
||||
### Google Colab
|
||||
|
||||
This is a great way to get started with ICICLE instantly. Google Colab offers free GPU access to a NVIDIA T4 instance, it's acquired with 16 GB of memory which should be enough for experimenting and even prototyping with ICICLE.
|
||||
|
||||
For an extensive guide on how to setup Google Colab with ICICLE refer to [this article](./colab-instructions.md).
|
||||
|
||||
If none of these options are appropriate for you reach out to us on [telegram](https://t.me/RealElan) we will do our best to help you.
|
||||
|
||||
### Vast.ai
|
||||
|
||||
[Vast.ai](https://vast.ai/) is a global GPU marketplace where you can rent many different types of GPUs by the hour for [competitive pricing](https://vast.ai/pricing). They provide on-demand and interruptible rentals depending on your need or use case; you can learn more about their rental types [here](https://vast.ai/faq#rental-types).
|
||||
|
||||
:::note
|
||||
|
||||
If none of these options suit your needs, contact us on [telegram](https://t.me/RealElan) for assistance. We're committed to ensuring that a lack of a GPU doesn't become a bottleneck for you. If you need help with setup or any other issues, we're here to do our best to help you.
|
||||
|
||||
:::
|
||||
|
||||
## What can you do with ICICLE?
|
||||
|
||||
[ICICLE](https://github.com/ingonyama-zk/icicle) can be used in the same way you would use any other cryptography library. While developing and integrating ICICLE into many proof systems, we found some use case categories:
|
||||
|
||||
### Circuit developers
|
||||
|
||||
If you are a circuit developer and are experiencing bottlenecks while running your circuits, an ICICLE integrated prover may be the solution.
|
||||
|
||||
ICICLE has been integrated into a number of popular ZK provers including [Gnark prover](https://github.com/Consensys/gnark) and [Halo2](https://github.com/zkonduit/halo2). This means that you can enjoy GPU acceleration for your existing circuits immediately without writing a single line of code by simply switching on the GPU prover flag!
|
||||
|
||||
### Integrating into existing ZK provers
|
||||
|
||||
From our collaborations we have learned that its possible to accelerate a specific part of your prover to solve for a specific bottleneck.
|
||||
|
||||
ICICLE can be used to accelerate specific parts of your prover without completely rewriting your ZK prover.
|
||||
|
||||
### Developing your own ZK provers
|
||||
|
||||
If your goal is to build a ZK prover from the ground up, ICICLE is an ideal tool for creating a highly optimized and scalable ZK prover. A key benefit of using GPUs with ICICLE is the ability to scale your ZK prover efficiently across multiple machines within a data center.
|
||||
|
||||
### Developing proof of concepts
|
||||
|
||||
ICICLE is also ideal for developing small prototypes. ICICLE has Golang and Rust bindings so you can easily develop a library implementing a specific primitive using ICICLE. An example would be develop a KZG commitment library using ICICLE.
|
||||
27
docs/docs/icicle/polynomials/ffi.uml
Normal file
@@ -0,0 +1,27 @@
|
||||
@startuml
|
||||
skinparam componentStyle uml2
|
||||
|
||||
' Define Components
|
||||
component "C++ Template\nComponent" as CppTemplate {
|
||||
[Parameterizable Interface]
|
||||
}
|
||||
component "C API Wrapper\nComponent" as CApiWrapper {
|
||||
[C API Interface]
|
||||
}
|
||||
component "Rust Code\nComponent" as RustCode {
|
||||
[Macro Interface\n(Template Instantiation)]
|
||||
}
|
||||
|
||||
' Define Artifact
|
||||
artifact "Static Library\n«artifact»" as StaticLib
|
||||
|
||||
' Connections
|
||||
CppTemplate -down-> CApiWrapper : Instantiates
|
||||
CApiWrapper .down.> StaticLib : Compiles into
|
||||
RustCode -left-> StaticLib : Links against\nand calls via FFI
|
||||
|
||||
' Notes
|
||||
note right of CppTemplate : Generic C++\ntemplate implementation
|
||||
note right of CApiWrapper : Exposes C API for FFI\nto Rust/Go
|
||||
note right of RustCode : Uses macros to\ninstantiate templates
|
||||
@enduml
|
||||
86
docs/docs/icicle/polynomials/hw_backends.uml
Normal file
@@ -0,0 +1,86 @@
|
||||
@startuml
|
||||
|
||||
' Define Interface for Polynomial Backend Operations
|
||||
interface IPolynomialBackend {
|
||||
+add()
|
||||
+subtract()
|
||||
+multiply()
|
||||
+divide()
|
||||
+evaluate()
|
||||
}
|
||||
|
||||
' Define Interface for Polynomial Context (State Management)
|
||||
interface IPolynomialContext {
|
||||
+initFromCoeffs()
|
||||
+initFromEvals()
|
||||
+getCoeffs()
|
||||
+getEvals()
|
||||
}
|
||||
|
||||
' PolynomialAPI now uses two strategies: Backend and Context
|
||||
class PolynomialAPI {
|
||||
-backendStrategy: IPolynomialBackend
|
||||
-contextStrategy: IPolynomialContext
|
||||
-setBackendStrategy(IPolynomialBackend)
|
||||
-setContextStrategy(IPolynomialContext)
|
||||
+add()
|
||||
+subtract()
|
||||
+multiply()
|
||||
+divide()
|
||||
+evaluate()
|
||||
}
|
||||
|
||||
' Backend Implementations
|
||||
class GPUPolynomialBackend implements IPolynomialBackend {
|
||||
#gpuResources: Resource
|
||||
+add()
|
||||
+subtract()
|
||||
+multiply()
|
||||
+divide()
|
||||
+evaluate()
|
||||
}
|
||||
|
||||
class ZPUPolynomialBackend implements IPolynomialBackend {
|
||||
#zpuResources: Resource
|
||||
+add()
|
||||
+subtract()
|
||||
+multiply()
|
||||
+divide()
|
||||
+evaluate()
|
||||
}
|
||||
|
||||
class TracerPolynomialBackend implements IPolynomialBackend {
|
||||
#traceData: Data
|
||||
+add()
|
||||
+subtract()
|
||||
+multiply()
|
||||
+divide()
|
||||
+evaluate()
|
||||
}
|
||||
|
||||
' Context Implementations (Placeholder for actual implementation)
|
||||
class GPUContext implements IPolynomialContext {
|
||||
+initFromCoeffs()
|
||||
+initFromEvals()
|
||||
+getCoeffs()
|
||||
+getEvals()
|
||||
}
|
||||
|
||||
class ZPUContext implements IPolynomialContext {
|
||||
+initFromCoeffs()
|
||||
+initFromEvals()
|
||||
+getCoeffs()
|
||||
+getEvals()
|
||||
}
|
||||
|
||||
class TracerContext implements IPolynomialContext {
|
||||
+initFromCoeffs()
|
||||
+initFromEvals()
|
||||
+getCoeffs()
|
||||
+getEvals()
|
||||
}
|
||||
|
||||
' Relationships
|
||||
PolynomialAPI o-- IPolynomialBackend : uses
|
||||
PolynomialAPI o-- IPolynomialContext : uses
|
||||
@enduml
|
||||
BIN
docs/docs/icicle/primitives/image-1.png
Normal file
|
After Width: | Height: | Size: 220 KiB |
BIN
docs/docs/icicle/primitives/image-2.png
Normal file
|
After Width: | Height: | Size: 215 KiB |
BIN
docs/docs/icicle/primitives/image-3.png
Normal file
|
After Width: | Height: | Size: 322 KiB |
BIN
docs/docs/icicle/primitives/image.png
Normal file
|
After Width: | Height: | Size: 113 KiB |
96
docs/docs/icicle/primitives/msm.md
Normal file
@@ -0,0 +1,96 @@
|
||||
# MSM - Multi scalar multiplication
|
||||
|
||||
MSM stands for Multi scalar multiplication, its defined as:
|
||||
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML">
|
||||
<mi>M</mi>
|
||||
<mi>S</mi>
|
||||
<mi>M</mi>
|
||||
<mo stretchy="false">(</mo>
|
||||
<mi>a</mi>
|
||||
<mo>,</mo>
|
||||
<mi>G</mi>
|
||||
<mo stretchy="false">)</mo>
|
||||
<mo>=</mo>
|
||||
<munderover>
|
||||
<mo data-mjx-texclass="OP" movablelimits="false">∑</mo>
|
||||
<mrow data-mjx-texclass="ORD">
|
||||
<mi>j</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mrow data-mjx-texclass="ORD">
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</munderover>
|
||||
<msub>
|
||||
<mi>a</mi>
|
||||
<mi>j</mi>
|
||||
</msub>
|
||||
<msub>
|
||||
<mi>G</mi>
|
||||
<mi>j</mi>
|
||||
</msub>
|
||||
</math>
|
||||
|
||||
Where
|
||||
|
||||
$G_j \in G$ - points from an Elliptic Curve group.
|
||||
|
||||
$a_0, \ldots, a_n$ - Scalars
|
||||
|
||||
$MSM(a, G) \in G$ - a single EC (elliptic curve) point
|
||||
|
||||
In words, MSM is the sum of scalar and EC point multiplications. We can see from this definition that the core operations occurring are Modular Multiplication and Elliptic curve point addition. Its obvious that multiplication can be computed in parallel and then the products summed, making MSM inherently parallelizable.
|
||||
|
||||
Accelerating MSM is crucial to a ZK protocol's performance due to the [large percent of run time](https://hackmd.io/@0xMonia/SkQ6-oRz3#Hardware-acceleration-in-action) they take when generating proofs.
|
||||
|
||||
You can learn more about how MSMs work from this [video](https://www.youtube.com/watch?v=Bl5mQA7UL2I) and from our resource list on [Ingopedia](https://www.ingonyama.com/ingopedia/msm).
|
||||
|
||||
## Supported curves
|
||||
|
||||
MSM supports the following curves:
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn254`, `bw6-761`, `grumpkin`
|
||||
|
||||
|
||||
## Supported Bindings
|
||||
|
||||
- [Golang](../golang-bindings/msm.md)
|
||||
- [Rust](../rust-bindings//msm.md)
|
||||
|
||||
## Supported algorithms
|
||||
|
||||
Our MSM implementation supports two algorithms `Bucket accumulation` and `Large triangle accumulation`.
|
||||
|
||||
### Bucket accumulation
|
||||
|
||||
The Bucket Accumulation algorithm is a method of dividing the overall MSM task into smaller, more manageable sub-tasks. It involves partitioning scalars and their corresponding points into different "buckets" based on the scalar values.
|
||||
|
||||
Bucket Accumulation can be more parallel-friendly because it involves dividing the computation into smaller, independent tasks, distributing scalar-point pairs into buckets and summing points within each bucket. This division makes it well suited for parallel processing on GPUs.
|
||||
|
||||
#### When should I use Bucket accumulation?
|
||||
|
||||
In scenarios involving large MSM computations with many scalar-point pairs, the ability to parallelize operations makes Bucket Accumulation more efficient. The larger the MSM task, the more significant the potential gains from parallelization.
|
||||
|
||||
### Large triangle accumulation
|
||||
|
||||
Large Triangle Accumulation is a method for optimizing MSM which focuses on reducing the number of point doublings in the computation. This algorithm is based on the observation that the number of point doublings can be minimized by structuring the computation in a specific manner.
|
||||
|
||||
#### When should I use Large triangle accumulation?
|
||||
|
||||
The Large Triangle Accumulation algorithm is more sequential in nature, as it builds upon each step sequentially (accumulating sums and then performing doubling). This structure can make it less suitable for parallelization but potentially more efficient for a <b>large batch of smaller MSM computations</b>.
|
||||
|
||||
## MSM Modes
|
||||
|
||||
ICICLE MSM also supports two different modes `Batch MSM` and `Single MSM`
|
||||
|
||||
Batch MSM allows you to run many MSMs with a single API call, Single MSM will launch a single MSM computation.
|
||||
|
||||
### Which mode should I use?
|
||||
|
||||
This decision is highly dependent on your use case and design. However, if your design allows for it, using batch mode can significantly improve efficiency. Batch processing allows you to perform multiple MSMs leveraging the parallel processing capabilities of GPUs.
|
||||
|
||||
Single MSM mode should be used when batching isn't possible or when you have to run a single MSM.
|
||||
159
docs/docs/icicle/primitives/ntt.md
Normal file
@@ -0,0 +1,159 @@
|
||||
# NTT - Number Theoretic Transform
|
||||
|
||||
The Number Theoretic Transform (NTT) is a variant of the Fourier Transform used over finite fields, particularly those of integers modulo a prime number. NTT operates in a discrete domain and is used primarily in applications requiring modular arithmetic, such as cryptography and polynomial multiplication.
|
||||
|
||||
NTT is defined similarly to the Discrete Fourier Transform (DFT), but instead of using complex roots of unity, it uses roots of unity within a finite field. The definition hinges on the properties of the finite field, specifically the existence of a primitive root of unity of order $N$ (where $N$ is typically a power of 2), and the modulo operation is performed with respect to a specific prime number that supports these roots.
|
||||
|
||||
Formally, given a sequence of integers $a_0, a_1, ..., a_{N-1}$, the NTT of this sequence is another sequence of integers $A_0, A_1, ..., A_{N-1}$, computed as follows:
|
||||
|
||||
$$
|
||||
A_k = \sum_{n=0}^{N-1} a_n \cdot \omega^{nk} \mod p
|
||||
$$
|
||||
|
||||
where:
|
||||
- $N$ is the size of the input sequence and is a power of 2,
|
||||
- $p$ is a prime number such that $p = kN + 1$ for some integer $k$, ensuring that $p$ supports the existence of $N$th roots of unity,
|
||||
- $\omega$ is a primitive $N$th root of unity modulo $p$, meaning $\omega^N \equiv 1 \mod p$ and no smaller positive power of $\omega$ is congruent to 1 modulo $p$,
|
||||
- $k$ ranges from 0 to $N-1$, and it indexes the output sequence.
|
||||
|
||||
The NTT is particularly useful because it enables efficient polynomial multiplication under modulo arithmetic, crucial for algorithms in cryptographic protocols, and other areas requiring fast modular arithmetic operations.
|
||||
|
||||
There exists also INTT which is the inverse operation of NTT. INTT can take as input an output sequence of integers from an NTT and reconstruct the original sequence.
|
||||
|
||||
# Using NTT
|
||||
|
||||
### Supported curves
|
||||
|
||||
NTT supports the following curves:
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn-254`, `bw6-761`
|
||||
|
||||
## Supported Bindings
|
||||
|
||||
- [Golang](../golang-bindings/ntt.md)
|
||||
- [Rust](../rust-bindings/ntt.md)
|
||||
|
||||
### Examples
|
||||
|
||||
- [Rust API examples](https://github.com/ingonyama-zk/icicle/blob/d84ffd2679a4cb8f8d1ac2ad2897bc0b95f4eeeb/examples/rust/ntt/src/main.rs#L1)
|
||||
|
||||
- [C++ API examples](https://github.com/ingonyama-zk/icicle/blob/d84ffd2679a4cb8f8d1ac2ad2897bc0b95f4eeeb/examples/c%2B%2B/ntt/example.cu#L1)
|
||||
|
||||
### Ordering
|
||||
|
||||
The `Ordering` enum defines how inputs and outputs are arranged for the NTT operation, offering flexibility in handling data according to different algorithmic needs or compatibility requirements. It primarily affects the sequencing of data points for the transform, which can influence both performance and the compatibility with certain algorithmic approaches. The available ordering options are:
|
||||
|
||||
- **`kNN` (Natural-Natural):** Both inputs and outputs are in their natural order. This is the simplest form of ordering, where data is processed in the sequence it is given, without any rearrangement.
|
||||
|
||||
- **`kNR` (Natural-Reversed):** Inputs are in natural order, while outputs are in bit-reversed order. This ordering is typically used in algorithms that benefit from having the output in a bit-reversed pattern.
|
||||
|
||||
- **`kRN` (Reversed-Natural):** Inputs are in bit-reversed order, and outputs are in natural order. This is often used with the Cooley-Tukey FFT algorithm.
|
||||
|
||||
- **`kRR` (Reversed-Reversed):** Both inputs and outputs are in bit-reversed order.
|
||||
|
||||
- **`kNM` (Natural-Mixed):** Inputs are provided in their natural order, while outputs are arranged in a digit-reversed (mixed) order. This ordering is good for mixed radix NTT operations, where the mixed or digit-reversed ordering of outputs is a generalization of the bit-reversal pattern seen in simpler, radix-2 cases.
|
||||
|
||||
- **`kMN` (Mixed-Natural):** Inputs are in a digit-reversed (mixed) order, while outputs are restored to their natural order. This ordering would primarily be used for mixed radix NTT
|
||||
|
||||
Choosing an algorithm is heavily dependent on your use case. For example Cooley-Tukey will often use `kRN` and Gentleman-Sande often uses `kNR`.
|
||||
|
||||
### Modes
|
||||
|
||||
NTT also supports two different modes `Batch NTT` and `Single NTT`
|
||||
|
||||
Batch NTT allows you to run many NTTs with a single API call, Single MSM will launch a single MSM computation.
|
||||
|
||||
Deciding weather to use `batch NTT` vs `single NTT` is highly dependent on your application and use case.
|
||||
|
||||
**Single NTT Mode**
|
||||
|
||||
- Choose this mode when your application requires processing individual NTT operations in isolation.
|
||||
|
||||
**Batch NTT Mode**
|
||||
|
||||
- Batch NTT mode can significantly reduce read/write as well as computation overhead by executing multiple NTT operations in parallel.
|
||||
|
||||
- Batch mode may also offer better utilization of computational resources (memory and compute).
|
||||
|
||||
## Supported algorithms
|
||||
|
||||
Our NTT implementation supports two algorithms `radix-2` and `mixed-radix`.
|
||||
|
||||
### Radix 2
|
||||
|
||||
At its core, the Radix-2 NTT algorithm divides the problem into smaller sub-problems, leveraging the properties of "divide and conquer" to reduce the overall computational complexity. The algorithm operates on sequences whose lengths are powers of two.
|
||||
|
||||
1. **Input Preparation:**
|
||||
The input is a sequence of integers $a_0, a_1, \ldots, a_{N-1}, \text{ where } N$ is a power of two.
|
||||
|
||||
2. **Recursive Decomposition:**
|
||||
The algorithm recursively divides the input sequence into smaller sequences. At each step, it separates the sequence into even-indexed and odd-indexed elements, forming two subsequences that are then processed independently.
|
||||
|
||||
3. **Butterfly Operations:**
|
||||
The core computational element of the Radix-2 NTT is the "butterfly" operation, which combines pairs of elements from the sequences obtained in the decomposition step.
|
||||
|
||||
Each butterfly operation involves multiplication by a "twiddle factor," which is a root of unity in the finite field, and addition or subtraction of the results, all performed modulo the prime modulus.
|
||||
|
||||
$$
|
||||
X_k = (A_k + B_k \cdot W^k) \mod p
|
||||
$$
|
||||
|
||||
$X_k$ - The output of the butterfly operation for the $k$-th element
|
||||
|
||||
$A_k$ - an element from the even-indexed subset
|
||||
|
||||
$B_k$ - an element from the odd-indexed subset
|
||||
|
||||
$p$ - prime modulus
|
||||
|
||||
$k$ - The index of the current operation within the butterfly or the transform stage
|
||||
|
||||
|
||||
The twiddle factors are precomputed to save runtime and improve performance.
|
||||
|
||||
4. **Bit-Reversal Permutation:**
|
||||
A final step involves rearranging the output sequence into the correct order. Due to the halving process in the decomposition steps, the elements of the transformed sequence are initially in a bit-reversed order. A bit-reversal permutation is applied to obtain the final sequence in natural order.
|
||||
|
||||
### Mixed Radix
|
||||
|
||||
The Mixed Radix NTT algorithm extends the concepts of the Radix-2 algorithm by allowing the decomposition of the input sequence based on various factors of its length. Specifically ICICLEs implementation splits the input into blocks of sizes 16,32,64 compared to radix2 which is always splitting such that we end with NTT of size 2. This approach offers enhanced flexibility and efficiency, especially for input sizes that are composite numbers, by leveraging the "divide and conquer" strategy across multiple radixes.
|
||||
|
||||
The NTT blocks in Mixed Radix are implemented more efficiently based on winograd NTT but also optimized memory and register usage is better compared to Radix-2.
|
||||
|
||||
Mixed Radix can reduce the number of stages required to compute for large inputs.
|
||||
|
||||
1. **Input Preparation:**
|
||||
The input to the Mixed Radix NTT is a sequence of integers $a_0, a_1, \ldots, a_{N-1}$, where $N$ is not strictly required to be a power of two. Instead, $N$ can be any composite number, ideally factorized into primes or powers of primes.
|
||||
|
||||
2. **Factorization and Decomposition:**
|
||||
Unlike the Radix-2 algorithm, which strictly divides the computational problem into halves, the Mixed Radix NTT algorithm implements a flexible decomposition approach which isn't limited to prime factorization.
|
||||
|
||||
For example, an NTT of size 256 can be decomposed into two stages of $16 \times \text{NTT}_{16}$, leveraging a composite factorization strategy rather than decomposing into eight stages of $\text{NTT}_{2}$. This exemplifies the use of composite factors (in this case, $256 = 16 \times 16$) to apply smaller NTT transforms, optimizing computational efficiency by adapting the decomposition strategy to the specific structure of $N$.
|
||||
|
||||
3. **Butterfly Operations with Multiple Radixes:**
|
||||
The Mixed Radix algorithm utilizes butterfly operations for various radix sizes. Each sub-transform involves specific butterfly operations characterized by multiplication with twiddle factors appropriate for the radix in question.
|
||||
|
||||
The generalized butterfly operation for a radix-$r$ element can be expressed as:
|
||||
|
||||
$$
|
||||
X_{k,r} = \sum_{j=0}^{r-1} (A_{j,k} \cdot W^{jk}) \mod p
|
||||
$$
|
||||
|
||||
where $X_{k,r}$ is the output of the $radix-r$ butterfly operation for the $k-th$ set of inputs, $A_{j,k}$ represents the $j-th$ input element for the $k-th$ operation, $W$ is the twiddle factor, and $p$ is the prime modulus.
|
||||
|
||||
4. **Recombination and Reordering:**
|
||||
After applying the appropriate butterfly operations across all decomposition levels, the Mixed Radix algorithm recombines the results into a single output sequence. Due to the varied sizes of the sub-transforms, a more complex reordering process may be required compared to Radix-2. This involves digit-reversal permutations to ensure that the final output sequence is correctly ordered.
|
||||
|
||||
### Which algorithm should I choose ?
|
||||
|
||||
Both work only on inputs of power of 2 (e.g., 256, 512, 1024).
|
||||
|
||||
Radix 2 is faster for small NTTs. A small NTT would be around logN = 16 and batch size 1. Radix 2 won't necessarily perform better for smaller `logn` with larger batches.
|
||||
|
||||
Mixed radix on the other hand works better for larger NTTs with larger input sizes.
|
||||
|
||||
Performance really depends on logn size, batch size, ordering, inverse, coset, coeff-field and which GPU you are using.
|
||||
|
||||
For this reason we implemented our [heuristic auto-selection](https://github.com/ingonyama-zk/icicle/blob/774250926c00ffe84548bc7dd97aea5227afed7e/icicle/appUtils/ntt/ntt.cu#L474) which should choose the most efficient algorithm in most cases.
|
||||
|
||||
We still recommend you benchmark for your specific use case if you think a different configuration would yield better results.
|
||||
11
docs/docs/icicle/primitives/overview.md
Normal file
@@ -0,0 +1,11 @@
|
||||
# ICICLE Primitives
|
||||
|
||||
This section of the documentation is dedicated to the ICICLE primitives, we will cover the usage and internal details of our primitives such as hashing algorithms, MSM and NTT.
|
||||
|
||||
|
||||
## Supported primitives
|
||||
|
||||
|
||||
- [MSM](./msm.md)
|
||||
- [NTT](./ntt.md)
|
||||
- [Poseidon Hash](./poseidon.md)
|
||||
226
docs/docs/icicle/primitives/poseidon.md
Normal file
@@ -0,0 +1,226 @@
|
||||
# Poseidon
|
||||
|
||||
[Poseidon](https://eprint.iacr.org/2019/458.pdf) is a popular hash in the ZK ecosystem primarily because its optimized to work over large prime fields, a common setting for ZK proofs, thereby minimizing the number of multiplicative operations required.
|
||||
|
||||
Poseidon has also been specifically designed to be efficient when implemented within ZK circuits, Poseidon uses far less constraints compared to other hash functions like Keccak or SHA-256 in the context of ZK circuits.
|
||||
|
||||
Poseidon has been used in many popular ZK protocols such as Filecoin and [Plonk](https://drive.google.com/file/d/1bZZvKMQHaZGA4L9eZhupQLyGINkkFG_b/view?usp=drive_open).
|
||||
|
||||
Our implementation of Poseidon is implemented in accordance with the optimized [Filecoin version](https://spec.filecoin.io/algorithms/crypto/poseidon/).
|
||||
|
||||
Let understand how Poseidon works.
|
||||
|
||||
### Initialization
|
||||
|
||||
Poseidon starts with the initialization of its internal state, which is composed of the input elements and some pregenerated constants. An initial round constant is added to each element of the internal state. Adding The round constants ensure the state is properly mixed from the outset.
|
||||
|
||||
This is done to prevent collisions and to prevent certain cryptographic attacks by ensuring that the internal state is sufficiently mixed and unpredictable.
|
||||
|
||||

|
||||
|
||||
### Applying full and partial rounds
|
||||
|
||||
To generate a secure hash output, the algorithm goes through a series of "full rounds" and "partial rounds" as well as transformations between these sets of rounds.
|
||||
|
||||
First full rounds => apply SBox and Round constants => partial rounds => Last full rounds => Apply SBox
|
||||
|
||||
#### Full rounds
|
||||
|
||||

|
||||
|
||||
**Uniform Application of S-Box:** In full rounds, the S-box (a non-linear transformation) is applied uniformly to every element of the hash function's internal state. This ensures a high degree of mixing and diffusion, contributing to the hash function's security. The functions S-box involves raising each element of the state to a certain power denoted by `α` a member of the finite field defined by the prime `p`, `α` can be different depending on the the implementation and user configuration.
|
||||
|
||||
**Linear Transformation:** After applying the S-box, a linear transformation is performed on the state. This involves multiplying the state by a MDS (Maximum Distance Separable) Matrix. which further diffuses the transformations applied by the S-box across the entire state.
|
||||
|
||||
**Addition of Round Constants:** Each element of the state is then modified by adding a unique round constant. These constants are different for each round and are precomputed as part of the hash function's initialization. The addition of round constants ensures that even minor changes to the input produce significant differences in the output.
|
||||
|
||||
#### Partial Rounds
|
||||
|
||||
**Selective Application of S-Box:** Partial rounds apply the S-box transformation to only one element of the internal state per round, rather than to all elements. This selective application significantly reduces the computational complexity of the hash function without compromising its security. The choice of which element to apply the S-box to can follow a specific pattern or be fixed, depending on the design of the hash function.
|
||||
|
||||
**Linear Transformation and Round Constants:** A linear transformation is performed and round constants are added. The linear transformation in partial rounds can be designed to be less computationally intensive (this is done by using a sparse matrix) than in full rounds, further optimizing the function's efficiency.
|
||||
|
||||
|
||||
The user of Poseidon can often choose how many partial or full rounds he wishes to apply; more full rounds will increase security but degrade performance. The choice and balance is highly dependent on the use case.
|
||||
|
||||

|
||||
|
||||
## Using Poseidon
|
||||
|
||||
ICICLE Poseidon is implemented for GPU and parallelization is performed for each element of the state rather than for each state.
|
||||
What that means is we calculate multiple hash-sums over multiple pre-images in parallel, rather than going block by block over the input vector.
|
||||
|
||||
So for Poseidon of arity 2 and input of size 1024 * 2, we would expect 1024 elements of output. Which means each block would be of size 2 and that would result in 1024 Poseidon hashes being performed.
|
||||
|
||||
### Supported API
|
||||
|
||||
[`Rust`](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/rust/icicle-core/src/poseidon), [`C++`](https://github.com/ingonyama-zk/icicle/tree/main/icicle/appUtils/poseidon)
|
||||
|
||||
### Supported curves
|
||||
|
||||
Poseidon supports the following curves:
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn-254`, `bw6-761`
|
||||
|
||||
### Constants
|
||||
|
||||
Poseidon is extremely customizable and using different constants will produce different hashes, security levels and performance results.
|
||||
|
||||
We support pre-calculated and optimized constants for each of the [supported curves](#supported-curves).The constants can be found [here](https://github.com/ingonyama-zk/icicle/tree/main/icicle/appUtils/poseidon/constants) and are labeled clearly per curve `<curve_name>_poseidon.h`.
|
||||
|
||||
If you wish to generate your own constants you can use our python script which can be found [here](https://github.com/ingonyama-zk/icicle/blob/b6dded89cdef18348a5d4e2748b71ce4211c63ad/icicle/appUtils/poseidon/constants/generate_parameters.py#L1).
|
||||
|
||||
Prerequisites:
|
||||
- Install python 3
|
||||
- `pip install poseidon-hash`
|
||||
- `pip install galois==0.3.7`
|
||||
- `pip install numpy`
|
||||
|
||||
You will then need to modify the following values before running the script.
|
||||
|
||||
```python
|
||||
# Modify these
|
||||
arity = 11 # we support arity 2, 4, 8 and 11.
|
||||
p = 0x73EDA753299D7D483339D80809A1D80553BDA402FFFE5BFEFFFFFFFF00000001 # bls12-381
|
||||
# p = 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed00000010a11800000000001 # bls12-377
|
||||
# p = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 # bn254
|
||||
# p = 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001 # bw6-761
|
||||
prime_bit_len = 255
|
||||
field_bytes = 32
|
||||
|
||||
...
|
||||
|
||||
# primitive_element = None
|
||||
primitive_element = 7 # bls12-381
|
||||
# primitive_element = 22 # bls12-377
|
||||
# primitive_element = 5 # bn254
|
||||
# primitive_element = 15 # bw6-761
|
||||
```
|
||||
|
||||
We only support `alpha = 5` so if you want to use another alpha for SBox please reach out on discord or open a github issue.
|
||||
|
||||
### Rust API
|
||||
|
||||
This is the most basic way to use the Poseidon API.
|
||||
|
||||
```rust
|
||||
let test_size = 1 << 10;
|
||||
let arity = 2u32;
|
||||
let ctx = get_default_device_context();
|
||||
let constants = load_optimized_poseidon_constants::<F>(arity, &ctx).unwrap();
|
||||
let config = PoseidonConfig::default();
|
||||
|
||||
let inputs = vec![F::one(); test_size * arity as usize];
|
||||
let outputs = vec![F::zero(); test_size];
|
||||
let mut input_slice = HostOrDeviceSlice::on_host(inputs);
|
||||
let mut output_slice = HostOrDeviceSlice::on_host(outputs);
|
||||
|
||||
poseidon_hash_many::<F>(
|
||||
&mut input_slice,
|
||||
&mut output_slice,
|
||||
test_size as u32,
|
||||
arity as u32,
|
||||
&constants,
|
||||
&config,
|
||||
)
|
||||
.unwrap();
|
||||
```
|
||||
|
||||
The `PoseidonConfig::default()` can be modified, by default the inputs and outputs are set to be on `Host` for example.
|
||||
|
||||
|
||||
```
|
||||
impl<'a> Default for PoseidonConfig<'a> {
|
||||
fn default() -> Self {
|
||||
let ctx = get_default_device_context();
|
||||
Self {
|
||||
ctx,
|
||||
are_inputs_on_device: false,
|
||||
are_outputs_on_device: false,
|
||||
input_is_a_state: false,
|
||||
aligned: false,
|
||||
loop_state: false,
|
||||
is_async: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
In the example above `load_optimized_poseidon_constants::<F>(arity, &ctx).unwrap();` is used which will load the correct constants based on arity and curve. Its possible to [generate](#constants) your own constants and load them.
|
||||
|
||||
```rust
|
||||
let ctx = get_default_device_context();
|
||||
let cargo_manifest_dir = env!("CARGO_MANIFEST_DIR");
|
||||
let constants_file = PathBuf::from(cargo_manifest_dir)
|
||||
.join("tests")
|
||||
.join(format!("{}_constants.bin", field_prefix));
|
||||
let mut constants_buf = vec![];
|
||||
File::open(constants_file)
|
||||
.unwrap()
|
||||
.read_to_end(&mut constants_buf)
|
||||
.unwrap();
|
||||
|
||||
let mut custom_constants = vec![];
|
||||
for chunk in constants_buf.chunks(field_bytes) {
|
||||
custom_constants.push(F::from_bytes_le(chunk));
|
||||
}
|
||||
|
||||
let custom_constants = create_optimized_poseidon_constants::<F>(
|
||||
arity as u32,
|
||||
&ctx,
|
||||
full_rounds_half,
|
||||
partial_rounds,
|
||||
&mut custom_constants,
|
||||
)
|
||||
.unwrap();
|
||||
```
|
||||
For more examples using different configurations refer here.
|
||||
|
||||
## The Tree Builder
|
||||
|
||||
The tree builder allows you to build Merkle trees using Poseidon.
|
||||
|
||||
You can define both the tree's `height` and its `arity`. The tree `height` determines the number of layers in the tree, including the root and the leaf layer. The `arity` determines how many children each internal node can have.
|
||||
|
||||
```rust
|
||||
let height = 20;
|
||||
let arity = 2;
|
||||
let leaves = vec![F::one(); 1 << (height - 1)];
|
||||
let mut digests = vec![F::zero(); merkle_tree_digests_len(height, arity)];
|
||||
|
||||
let mut leaves_slice = HostOrDeviceSlice::on_host(leaves);
|
||||
|
||||
let ctx = get_default_device_context();
|
||||
let constants = load_optimized_poseidon_constants::<F>(arity, &ctx).unwrap()
|
||||
|
||||
let mut config = TreeBuilderConfig::default();
|
||||
config.keep_rows = 1;
|
||||
build_poseidon_merkle_tree::<F>(&mut leaves_slice, &mut digests, height, arity, &constants, &config).unwrap();
|
||||
|
||||
println!("Root: {:?}", digests[0..1][0]);
|
||||
```
|
||||
|
||||
Similar to Poseidon, you can also configure the Tree Builder `TreeBuilderConfig::default()`
|
||||
|
||||
- `keep_rows`: The number of rows which will be written to output, 0 will write all rows.
|
||||
- `are_inputs_on_device`: Have the inputs been loaded to device memory ?
|
||||
- `is_async`: Should the TreeBuilder run asynchronously? `False` will block the current CPU thread. `True` will require you call `cudaStreamSynchronize` or `cudaDeviceSynchronize` to retrieve the result.
|
||||
|
||||
### Benchmarks
|
||||
|
||||
We ran the Poseidon tree builder on:
|
||||
|
||||
**CPU**: 12th Gen Intel(R) Core(TM) i9-12900K/
|
||||
|
||||
**GPU**: RTX 3090 Ti
|
||||
|
||||
**Tree height**: 30 (2^29 elements)
|
||||
|
||||
The benchmarks include copying data from and to the device.
|
||||
|
||||
|
||||
| Rows to keep parameter | Run time, Icicle | Supranational PC2
|
||||
| ----------- | ----------- | ----------- |
|
||||
| 10 | 9.4 seconds | 13.6 seconds
|
||||
| 20 | 9.5 seconds | 13.6 seconds
|
||||
| 29 | 13.7 seconds | 13.6 seconds
|
||||
57
docs/docs/icicle/rust-bindings.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# Rust bindings
|
||||
|
||||
Rust bindings allow you to use ICICLE as a rust library.
|
||||
|
||||
`icicle-core` defines all interfaces, macros and common methods.
|
||||
|
||||
`icicle-cuda-runtime` defines DeviceContext which can be used to manage a specific GPU as well as wrapping common CUDA methods.
|
||||
|
||||
`icicle-curves` implements all interfaces and macros from icicle-core for each curve. For example icicle-bn254 implements curve bn254. Each curve has its own build script which will build the CUDA libraries for that curve as part of the rust-toolchain build.
|
||||
|
||||
## Using ICICLE Rust bindings in your project
|
||||
|
||||
Simply add the following to your `Cargo.toml`.
|
||||
|
||||
```
|
||||
# GPU Icicle integration
|
||||
icicle-cuda-runtime = { git = "https://github.com/ingonyama-zk/icicle.git" }
|
||||
icicle-core = { git = "https://github.com/ingonyama-zk/icicle.git" }
|
||||
icicle-bn254 = { git = "https://github.com/ingonyama-zk/icicle.git" }
|
||||
```
|
||||
|
||||
`icicle-bn254` being the curve you wish to use and `icicle-core` and `icicle-cuda-runtime` contain ICICLE utilities and CUDA wrappers.
|
||||
|
||||
If you wish to point to a specific ICICLE branch add `branch = "<name_of_branch>"` or `tag = "<name_of_tag>"` to the ICICLE dependency. For a specific commit add `rev = "<commit_id>"`.
|
||||
|
||||
When you build your project ICICLE will be built as part of the build command.
|
||||
|
||||
# How do the rust bindings work?
|
||||
|
||||
The rust bindings are just rust wrappers for ICICLE Core static libraries which can be compiled. We integrate the compilation of the static libraries into rusts toolchain to make usage seamless and easy. This is achieved by [extending rusts build command](https://github.com/ingonyama-zk/icicle/blob/main/wrappers/rust/icicle-curves/icicle-bn254/build.rs).
|
||||
|
||||
```rust
|
||||
use cmake::Config;
|
||||
use std::env::var;
|
||||
|
||||
fn main() {
|
||||
println!("cargo:rerun-if-env-changed=CXXFLAGS");
|
||||
println!("cargo:rerun-if-changed=../../../../icicle");
|
||||
|
||||
let cargo_dir = var("CARGO_MANIFEST_DIR").unwrap();
|
||||
let profile = var("PROFILE").unwrap();
|
||||
|
||||
let out_dir = Config::new("../../../../icicle")
|
||||
.define("BUILD_TESTS", "OFF") //TODO: feature
|
||||
.define("CURVE", "bn254")
|
||||
.define("CMAKE_BUILD_TYPE", "Release")
|
||||
.build_target("icicle")
|
||||
.build();
|
||||
|
||||
println!("cargo:rustc-link-search={}/build", out_dir.display());
|
||||
|
||||
println!("cargo:rustc-link-lib=ingo_bn254");
|
||||
println!("cargo:rustc-link-lib=stdc++");
|
||||
// println!("cargo:rustc-link-search=native=/usr/local/cuda/lib64");
|
||||
println!("cargo:rustc-link-lib=cudart");
|
||||
}
|
||||
```
|
||||
63
docs/docs/icicle/rust-bindings/msm-pre-computation.md
Normal file
@@ -0,0 +1,63 @@
|
||||
# MSM Pre computation
|
||||
|
||||
To understand the theory behind MSM pre computation technique refer to Niall Emmart's [talk](https://youtu.be/KAWlySN7Hm8?feature=shared&t=1734).
|
||||
|
||||
### Supported curves
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn254`, `bw6-761`, `Grumpkin`
|
||||
|
||||
### `precompute_bases`
|
||||
|
||||
Precomputes bases for the multi-scalar multiplication (MSM) by extending each base point with its multiples, facilitating more efficient MSM calculations.
|
||||
|
||||
```rust
|
||||
pub fn precompute_bases<C: Curve + MSM<C>>(
|
||||
points: &HostOrDeviceSlice<Affine<C>>,
|
||||
precompute_factor: i32,
|
||||
_c: i32,
|
||||
ctx: &DeviceContext,
|
||||
output_bases: &mut HostOrDeviceSlice<Affine<C>>,
|
||||
) -> IcicleResult<()>
|
||||
```
|
||||
|
||||
|
||||
#### Parameters
|
||||
|
||||
- **`points`**: The original set of affine points (\(P_1, P_2, ..., P_n\)) to be used in the MSM. For batch MSM operations, this should include all unique points concatenated together.
|
||||
- **`precompute_factor`**: Specifies the total number of points to precompute for each base, including the base point itself. This parameter directly influences the memory requirements and the potential speedup of the MSM operation.
|
||||
- **`_c`**: Currently unused. Intended for future use to align with the `c` parameter in `MSMConfig`, ensuring the precomputation is compatible with the bucket method's window size used in MSM.
|
||||
- **`ctx`**: The device context specifying the device ID and stream for execution. This context determines where the precomputation is performed (e.g., on a specific GPU).
|
||||
- **`output_bases`**: The output buffer for the extended bases. Its size must be `points.len() * precompute_factor`. This buffer should be allocated on the device for GPU computations.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Ok(())` if the operation is successful, or an `IcicleResult` error otherwise.
|
||||
|
||||
#### Description
|
||||
|
||||
This function extends each provided base point $(P)$ with its multiples $(2^lP, 2^{2l}P, ..., 2^{(precompute_factor - 1) \cdot l}P)$, where $(l)$ is a level of precomputation determined by the `precompute_factor`. The extended set of points facilitates faster MSM computations by allowing the MSM algorithm to leverage precomputed multiples of base points, reducing the number of point additions required during the computation.
|
||||
|
||||
The precomputation process is crucial for optimizing MSM operations, especially when dealing with large sets of points and scalars. By precomputing and storing multiples of the base points, the MSM function can more efficiently compute the scalar-point multiplications.
|
||||
|
||||
#### Example Usage
|
||||
|
||||
```rust
|
||||
let device_context = DeviceContext::default_for_device(0); // Use the default device
|
||||
let precompute_factor = 4; // Number of points to precompute
|
||||
let mut extended_bases = HostOrDeviceSlice::cuda_malloc(expected_size).expect("Failed to allocate memory for extended bases");
|
||||
|
||||
// Precompute the bases using the specified factor
|
||||
precompute_bases(&points, precompute_factor, 0, &device_context, &mut extended_bases)
|
||||
.expect("Failed to precompute bases");
|
||||
```
|
||||
|
||||
### Benchmarks
|
||||
|
||||
Benchmarks where performed on a Nvidia RTX 3090Ti.
|
||||
|
||||
| Pre-computation factor | bn254 size `2^20` MSM, ms. | bn254 size `2^12` MSM, size `2^10` batch, ms. | bls12-381 size `2^20` MSM, ms. | bls12-381 size `2^12` MSM, size `2^10` batch, ms. |
|
||||
| ------------- | ------------- | ------------- | ------------- | ------------- |
|
||||
| 1 | 14.1 | 82.8 | 25.5 | 136.7 |
|
||||
| 2 | 11.8 | 76.6 | 20.3 | 123.8 |
|
||||
| 4 | 10.9 | 73.8 | 18.1 | 117.8 |
|
||||
| 8 | 10.6 | 73.7 | 17.2 | 116.0 |
|
||||
172
docs/docs/icicle/rust-bindings/msm.md
Normal file
@@ -0,0 +1,172 @@
|
||||
# MSM
|
||||
|
||||
### Supported curves
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn-254`, `bw6-761`, `grumpkin`
|
||||
|
||||
## Example
|
||||
|
||||
```rust
|
||||
use icicle_bn254::curve::{CurveCfg, G1Projective, ScalarCfg};
|
||||
use icicle_core::{curve::Curve, msm, traits::GenerateRandom};
|
||||
use icicle_cuda_runtime::{memory::HostOrDeviceSlice, stream::CudaStream};
|
||||
|
||||
fn main() {
|
||||
let size: usize = 1 << 10; // Define the number of points and scalars
|
||||
|
||||
// Generate random points and scalars
|
||||
println!("Generating random G1 points and scalars for BN254...");
|
||||
let points = CurveCfg::generate_random_affine_points(size);
|
||||
let scalars = ScalarCfg::generate_random(size);
|
||||
|
||||
// Wrap points and scalars in HostOrDeviceSlice for MSM
|
||||
let points_host = HostOrDeviceSlice::Host(points);
|
||||
let scalars_host = HostOrDeviceSlice::Host(scalars);
|
||||
|
||||
// Allocate memory on the CUDA device for MSM results
|
||||
let mut msm_results: HostOrDeviceSlice<'_, G1Projective> = HostOrDeviceSlice::cuda_malloc(1).expect("Failed to allocate CUDA memory for MSM results");
|
||||
|
||||
// Create a CUDA stream for asynchronous execution
|
||||
let stream = CudaStream::create().expect("Failed to create CUDA stream");
|
||||
let mut cfg = msm::MSMConfig::default();
|
||||
cfg.ctx.stream = &stream;
|
||||
cfg.is_async = true; // Enable asynchronous execution
|
||||
|
||||
// Execute MSM on the device
|
||||
println!("Executing MSM on device...");
|
||||
msm::msm(&scalars_host, &points_host, &cfg, &mut msm_results).expect("Failed to execute MSM");
|
||||
|
||||
// Synchronize CUDA stream to ensure MSM execution is complete
|
||||
stream.synchronize().expect("Failed to synchronize CUDA stream");
|
||||
|
||||
// Optionally, move results to host for further processing or printing
|
||||
println!("MSM execution complete.");
|
||||
}
|
||||
```
|
||||
|
||||
## MSM API Overview
|
||||
|
||||
```rust
|
||||
pub fn msm<C: Curve>(
|
||||
scalars: &HostOrDeviceSlice<C::ScalarField>,
|
||||
points: &HostOrDeviceSlice<Affine<C>>,
|
||||
cfg: &MSMConfig,
|
||||
results: &mut HostOrDeviceSlice<Projective<C>>,
|
||||
) -> IcicleResult<()>
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- **`scalars`**: A buffer containing the scalar values to be multiplied with corresponding points.
|
||||
- **`points`**: A buffer containing the points to be multiplied by the scalars.
|
||||
- **`cfg`**: MSM configuration specifying additional parameters for the operation.
|
||||
- **`results`**: A buffer where the results of the MSM operations will be stored.
|
||||
|
||||
### MSM Config
|
||||
|
||||
```rust
|
||||
pub struct MSMConfig<'a> {
|
||||
pub ctx: DeviceContext<'a>,
|
||||
points_size: i32,
|
||||
pub precompute_factor: i32,
|
||||
pub c: i32,
|
||||
pub bitsize: i32,
|
||||
pub large_bucket_factor: i32,
|
||||
batch_size: i32,
|
||||
are_scalars_on_device: bool,
|
||||
pub are_scalars_montgomery_form: bool,
|
||||
are_points_on_device: bool,
|
||||
pub are_points_montgomery_form: bool,
|
||||
are_results_on_device: bool,
|
||||
pub is_big_triangle: bool,
|
||||
pub is_async: bool,
|
||||
}
|
||||
```
|
||||
|
||||
- **`ctx: DeviceContext`**: Specifies the device context, device id and the CUDA stream for asynchronous execution.
|
||||
- **`point_size: i32`**:
|
||||
- **`precompute_factor: i32`**: Determines the number of extra points to pre-compute for each point, affecting memory footprint and performance.
|
||||
- **`c: i32`**: The "window bitsize," a parameter controlling the computational complexity and memory footprint of the MSM operation.
|
||||
- **`bitsize: i32`**: The number of bits of the largest scalar, typically equal to the bit size of the scalar field.
|
||||
- **`large_bucket_factor: i32`**: Adjusts the algorithm's sensitivity to frequently occurring buckets, useful for non-uniform scalar distributions.
|
||||
- **`batch_size: i32`**: The number of MSMs to compute in a single batch, for leveraging parallelism.
|
||||
- **`are_scalars_montgomery_form`**: Set to `true` if scalars are in montgomery form.
|
||||
- **`are_points_montgomery_form`**: Set to `true` if points are in montgomery form.
|
||||
- **`are_scalars_on_device: bool`**, **`are_points_on_device: bool`**, **`are_results_on_device: bool`**: Indicate whether the corresponding buffers are on the device memory.
|
||||
- **`is_big_triangle`**: If `true` MSM will run in Large triangle accumulation if `false` Bucket accumulation will be chosen. Default value: false.
|
||||
- **`is_async: bool`**: Whether to perform the MSM operation asynchronously.
|
||||
|
||||
### Usage
|
||||
|
||||
The `msm` function is designed to compute the sum of multiple scalar-point multiplications efficiently. It supports both single MSM operations and batched operations for increased performance. The configuration allows for detailed control over the execution environment and performance characteristics of the MSM operation.
|
||||
|
||||
When performing MSM operations, it's crucial to match the size of the `scalars` and `points` arrays correctly and ensure that the `results` buffer is appropriately sized to hold the output. The `MSMConfig` should be set up to reflect the specifics of the operation, including whether the operation should be asynchronous and any device-specific settings.
|
||||
|
||||
## How do I toggle between the supported algorithms?
|
||||
|
||||
When creating your MSM Config you may state which algorithm you wish to use. `is_big_triangle=true` will activate Large triangle accumulation and `is_big_triangle=false` will activate Bucket accumulation.
|
||||
|
||||
```rust
|
||||
...
|
||||
|
||||
let mut cfg_bls12377 = msm::get_default_msm_config::<BLS12377CurveCfg>();
|
||||
|
||||
// is_big_triangle will determine which algorithm to use
|
||||
cfg_bls12377.is_big_triangle = true;
|
||||
|
||||
msm::msm(&scalars, &points, &cfg, &mut msm_results).unwrap();
|
||||
...
|
||||
```
|
||||
|
||||
You may reference the rust code [here](https://github.com/ingonyama-zk/icicle/blob/77a7613aa21961030e4e12bf1c9a78a2dadb2518/wrappers/rust/icicle-core/src/msm/mod.rs#L54).
|
||||
|
||||
|
||||
## How do I toggle between MSM modes?
|
||||
|
||||
Toggling between MSM modes occurs automatically based on the number of results you are expecting from the `msm::msm` function. If you are expecting an array of `msm_results`, ICICLE will automatically split `scalars` and `points` into equal parts and run them as multiple MSMs in parallel.
|
||||
|
||||
```rust
|
||||
...
|
||||
|
||||
let mut msm_result: HostOrDeviceSlice<'_, G1Projective> = HostOrDeviceSlice::cuda_malloc(1).unwrap();
|
||||
msm::msm(&scalars, &points, &cfg, &mut msm_result).unwrap();
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
In the example above we allocate a single expected result which the MSM method will interpret as `batch_size=1` and run a single MSM.
|
||||
|
||||
|
||||
In the next example, we are expecting 10 results which sets `batch_size=10` and runs 10 MSMs in batch mode.
|
||||
|
||||
```rust
|
||||
...
|
||||
|
||||
let mut msm_results: HostOrDeviceSlice<'_, G1Projective> = HostOrDeviceSlice::cuda_malloc(10).unwrap();
|
||||
msm::msm(&scalars, &points, &cfg, &mut msm_results).unwrap();
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
Here is a [reference](https://github.com/ingonyama-zk/icicle/blob/77a7613aa21961030e4e12bf1c9a78a2dadb2518/wrappers/rust/icicle-core/src/msm/mod.rs#L108) to the code which automatically sets the batch size. For more MSM examples have a look [here](https://github.com/ingonyama-zk/icicle/blob/77a7613aa21961030e4e12bf1c9a78a2dadb2518/examples/rust/msm/src/main.rs#L1).
|
||||
|
||||
## Support for G2 group
|
||||
|
||||
MSM also supports G2 group.
|
||||
|
||||
Using MSM in G2 requires a G2 config, and of course your Points should also be G2 Points.
|
||||
|
||||
```rust
|
||||
...
|
||||
|
||||
let scalars = HostOrDeviceSlice::Host(upper_scalars[..size].to_vec());
|
||||
let g2_points = HostOrDeviceSlice::Host(g2_upper_points[..size].to_vec());
|
||||
let mut g2_msm_results: HostOrDeviceSlice<'_, G2Projective> = HostOrDeviceSlice::cuda_malloc(1).unwrap();
|
||||
let mut g2_cfg = msm::get_default_msm_config::<G2CurveCfg>();
|
||||
|
||||
msm::msm(&scalars, &g2_points, &g2_cfg, &mut g2_msm_results).unwrap();
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
Here you can [find an example](https://github.com/ingonyama-zk/icicle/blob/5a96f9937d0a7176d88c766bd3ef2062b0c26c37/examples/rust/msm/src/main.rs#L114) of MSM on G2 Points.
|
||||
202
docs/docs/icicle/rust-bindings/multi-gpu.md
Normal file
@@ -0,0 +1,202 @@
|
||||
# Multi GPU APIs
|
||||
|
||||
To learn more about the theory of Multi GPU programming refer to [this part](../multi-gpu.md) of documentation.
|
||||
|
||||
Here we will cover the core multi GPU apis and a [example](#a-multi-gpu-example)
|
||||
|
||||
|
||||
## A Multi GPU example
|
||||
|
||||
In this example we will display how you can
|
||||
|
||||
1. Fetch the number of devices installed on a machine
|
||||
2. For every GPU launch a thread and set an active device per thread.
|
||||
3. Execute a MSM on each GPU
|
||||
|
||||
|
||||
|
||||
```rust
|
||||
|
||||
...
|
||||
|
||||
let device_count = get_device_count().unwrap();
|
||||
|
||||
(0..device_count)
|
||||
.into_par_iter()
|
||||
.for_each(move |device_id| {
|
||||
set_device(device_id).unwrap();
|
||||
|
||||
// you can allocate points and scalars_d here
|
||||
|
||||
let mut cfg = MSMConfig::default_for_device(device_id);
|
||||
cfg.ctx.stream = &stream;
|
||||
cfg.is_async = true;
|
||||
cfg.are_scalars_montgomery_form = true;
|
||||
msm(&scalars_d, &HostOrDeviceSlice::on_host(points), &cfg, &mut msm_results).unwrap();
|
||||
|
||||
// collect and process results
|
||||
})
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
We use `get_device_count` to fetch the number of connected devices, device IDs will be `0, 1, 2, ..., device_count - 1`
|
||||
|
||||
[`into_par_iter`](https://docs.rs/rayon/latest/rayon/iter/trait.IntoParallelIterator.html#tymethod.into_par_iter) is a parallel iterator, you should expect it to launch a thread for every iteration.
|
||||
|
||||
We then call `set_device(device_id).unwrap();` it should set the context of that thread to the selected `device_id`.
|
||||
|
||||
Any data you now allocate from the context of this thread will be linked to the `device_id`. We create our `MSMConfig` with the selected device ID `let mut cfg = MSMConfig::default_for_device(device_id);`, behind the scene this will create for us a `DeviceContext` configured for that specific GPU.
|
||||
|
||||
We finally call our `msm` method.
|
||||
|
||||
|
||||
## Device management API
|
||||
|
||||
To streamline device management we offer as part of `icicle-cuda-runtime` package methods for dealing with devices.
|
||||
|
||||
#### [`set_device`](https://github.com/ingonyama-zk/icicle/blob/e6035698b5e54632f2c44e600391352ccc11cad4/wrappers/rust/icicle-cuda-runtime/src/device.rs#L6)
|
||||
|
||||
Sets the current CUDA device by its ID, when calling `set_device` it will set the current thread to a CUDA device.
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- `device_id: usize`: The ID of the device to set as the current device. Device IDs start from 0.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `CudaResult<()>`: An empty result indicating success if the device is set successfully. In case of failure, returns a `CudaError`.
|
||||
|
||||
**Errors:**
|
||||
|
||||
- Returns a `CudaError` if the specified device ID is invalid or if a CUDA-related error occurs during the operation.
|
||||
|
||||
**Example:**
|
||||
|
||||
```rust
|
||||
let device_id = 0; // Device ID to set
|
||||
match set_device(device_id) {
|
||||
Ok(()) => println!("Device set successfully."),
|
||||
Err(e) => eprintln!("Failed to set device: {:?}", e),
|
||||
}
|
||||
```
|
||||
|
||||
#### [`get_device_count`](https://github.com/ingonyama-zk/icicle/blob/e6035698b5e54632f2c44e600391352ccc11cad4/wrappers/rust/icicle-cuda-runtime/src/device.rs#L10)
|
||||
|
||||
Retrieves the number of CUDA devices available on the machine.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `CudaResult<usize>`: The number of available CUDA devices. On success, contains the count of CUDA devices. On failure, returns a `CudaError`.
|
||||
|
||||
**Errors:**
|
||||
|
||||
- Returns a `CudaError` if a CUDA-related error occurs during the retrieval of the device count.
|
||||
|
||||
**Example:**
|
||||
|
||||
```rust
|
||||
match get_device_count() {
|
||||
Ok(count) => println!("Number of devices available: {}", count),
|
||||
Err(e) => eprintln!("Failed to get device count: {:?}", e),
|
||||
}
|
||||
```
|
||||
|
||||
#### [`get_device`](https://github.com/ingonyama-zk/icicle/blob/e6035698b5e54632f2c44e600391352ccc11cad4/wrappers/rust/icicle-cuda-runtime/src/device.rs#L15)
|
||||
|
||||
Retrieves the ID of the current CUDA device.
|
||||
|
||||
**Returns:**
|
||||
|
||||
- `CudaResult<usize>`: The ID of the current CUDA device. On success, contains the device ID. On failure, returns a `CudaError`.
|
||||
|
||||
**Errors:**
|
||||
|
||||
- Returns a `CudaError` if a CUDA-related error occurs during the retrieval of the current device ID.
|
||||
|
||||
**Example:**
|
||||
|
||||
```rust
|
||||
match get_device() {
|
||||
Ok(device_id) => println!("Current device ID: {}", device_id),
|
||||
Err(e) => eprintln!("Failed to get current device: {:?}", e),
|
||||
}
|
||||
```
|
||||
|
||||
## Device context API
|
||||
|
||||
The `DeviceContext` is embedded into `NTTConfig`, `MSMConfig` and `PoseidonConfig`, meaning you can simply pass a `device_id` to your existing config and the same computation will be triggered on a different device.
|
||||
|
||||
#### [`DeviceContext`](https://github.com/ingonyama-zk/icicle/blob/e6035698b5e54632f2c44e600391352ccc11cad4/wrappers/rust/icicle-cuda-runtime/src/device_context.rs#L11)
|
||||
|
||||
Represents the configuration a CUDA device, encapsulating the device's stream, ID, and memory pool. The default device is always `0`.
|
||||
|
||||
```rust
|
||||
pub struct DeviceContext<'a> {
|
||||
pub stream: &'a CudaStream,
|
||||
pub device_id: usize,
|
||||
pub mempool: CudaMemPool,
|
||||
}
|
||||
```
|
||||
|
||||
##### Fields
|
||||
|
||||
- **`stream: &'a CudaStream`**
|
||||
|
||||
A reference to a `CudaStream`. This stream is used for executing CUDA operations. By default, it points to a null stream CUDA's default execution stream.
|
||||
|
||||
- **`device_id: usize`**
|
||||
|
||||
The index of the GPU currently in use. The default value is `0`, indicating the first GPU in the system.
|
||||
|
||||
In some cases assuming `CUDA_VISIBLE_DEVICES` was configured, for example as `CUDA_VISIBLE_DEVICES=2,3,7` in the system with 8 GPUs - the `device_id=0` will correspond to GPU with id 2. So the mapping may not always be a direct reflection of the number of GPUs installed on a system.
|
||||
|
||||
- **`mempool: CudaMemPool`**
|
||||
|
||||
Represents the memory pool used for CUDA memory allocations. The default is set to a null pointer, which signifies the use of the default CUDA memory pool.
|
||||
|
||||
##### Implementation Notes
|
||||
|
||||
- The `DeviceContext` structure is cloneable and can be debugged, facilitating easier logging and duplication of contexts when needed.
|
||||
|
||||
|
||||
#### [`DeviceContext::default_for_device(device_id: usize) -> DeviceContext<'static>`](https://github.com/ingonyama-zk/icicle/blob/e6035698b5e54632f2c44e600391352ccc11cad4/wrappers/rust/icicle-cuda-runtime/src/device_context.rs#L30)
|
||||
|
||||
Provides a default `DeviceContext` with system-wide defaults, ideal for straightforward setups.
|
||||
|
||||
#### Returns
|
||||
|
||||
A `DeviceContext` instance configured with:
|
||||
- The default stream (`null_mut()`).
|
||||
- The default device ID (`0`).
|
||||
- The default memory pool (`null_mut()`).
|
||||
|
||||
#### Parameters
|
||||
|
||||
- **`device_id: usize`**: The ID of the device for which to create the context.
|
||||
|
||||
#### Returns
|
||||
|
||||
A `DeviceContext` instance with the provided `device_id` and default settings for the stream and memory pool.
|
||||
|
||||
|
||||
#### [`check_device(device_id: i32)`](https://github.com/vhnatyk/icicle/blob/eef6876b037a6b0797464e7cdcf9c1ecfcf41808/wrappers/rust/icicle-cuda-runtime/src/device_context.rs#L42)
|
||||
|
||||
Validates that the specified `device_id` matches the ID of the currently active device, ensuring operations are targeted correctly.
|
||||
|
||||
#### Parameters
|
||||
|
||||
- **`device_id: i32`**: The device ID to verify against the currently active device.
|
||||
|
||||
#### Behavior
|
||||
|
||||
- **Panics** if the `device_id` does not match the active device's ID, preventing cross-device operation errors.
|
||||
|
||||
#### Example
|
||||
|
||||
```rust
|
||||
let device_id: i32 = 0; // Example device ID
|
||||
check_device(device_id);
|
||||
// Ensures that the current context is correctly set for the specified device ID.
|
||||
```
|
||||
199
docs/docs/icicle/rust-bindings/ntt.md
Normal file
@@ -0,0 +1,199 @@
|
||||
# NTT
|
||||
|
||||
### Supported curves
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn-254`, `bw6-761`
|
||||
|
||||
## Example
|
||||
|
||||
```rust
|
||||
use icicle_bn254::curve::{ScalarCfg, ScalarField};
|
||||
use icicle_core::{ntt::{self, NTT}, traits::GenerateRandom};
|
||||
use icicle_cuda_runtime::{device_context::DeviceContext, memory::HostOrDeviceSlice, stream::CudaStream};
|
||||
|
||||
fn main() {
|
||||
let size = 1 << 12; // Define the size of your input, e.g., 2^10
|
||||
|
||||
let icicle_omega = <Bn254Fr as FftField>::get_root_of_unity(
|
||||
size.try_into()
|
||||
.unwrap(),
|
||||
)
|
||||
|
||||
// Generate random inputs
|
||||
println!("Generating random inputs...");
|
||||
let scalars = HostOrDeviceSlice::Host(ScalarCfg::generate_random(size));
|
||||
|
||||
// Allocate memory on CUDA device for NTT results
|
||||
let mut ntt_results: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::cuda_malloc(size).expect("Failed to allocate CUDA memory");
|
||||
|
||||
// Create a CUDA stream
|
||||
let stream = CudaStream::create().expect("Failed to create CUDA stream");
|
||||
let ctx = DeviceContext::default(); // Assuming default device context
|
||||
ScalarCfg::initialize_domain(ScalarField::from_ark(icicle_omega), &ctx).unwrap();
|
||||
|
||||
// Configure NTT
|
||||
let mut cfg = ntt::NTTConfig::default();
|
||||
cfg.ctx.stream = &stream;
|
||||
cfg.is_async = true; // Set to true for asynchronous execution
|
||||
|
||||
// Execute NTT on device
|
||||
println!("Executing NTT on device...");
|
||||
ntt::ntt(&scalars, ntt::NTTDir::kForward, &cfg, &mut ntt_results).expect("Failed to execute NTT");
|
||||
|
||||
// Synchronize CUDA stream to ensure completion
|
||||
stream.synchronize().expect("Failed to synchronize CUDA stream");
|
||||
|
||||
// Optionally, move results to host for further processing or verification
|
||||
println!("NTT execution complete.");
|
||||
}
|
||||
```
|
||||
|
||||
## NTT API overview
|
||||
|
||||
```rust
|
||||
pub fn ntt<F>(
|
||||
input: &HostOrDeviceSlice<F>,
|
||||
dir: NTTDir,
|
||||
cfg: &NTTConfig<F>,
|
||||
output: &mut HostOrDeviceSlice<F>,
|
||||
) -> IcicleResult<()>
|
||||
```
|
||||
|
||||
`ntt:ntt` expects:
|
||||
|
||||
`input` - buffer to read the inputs of the NTT from. <br/>
|
||||
`dir` - whether to compute forward or inverse NTT. <br/>
|
||||
`cfg` - config used to specify extra arguments of the NTT. <br/>
|
||||
`output` - buffer to write the NTT outputs into. Must be of the same size as input.
|
||||
|
||||
The `input` and `output` buffers can be on device or on host. Being on host means that they will be transferred to device during runtime.
|
||||
|
||||
|
||||
### NTT Config
|
||||
|
||||
```rust
|
||||
pub struct NTTConfig<'a, S> {
|
||||
pub ctx: DeviceContext<'a>,
|
||||
pub coset_gen: S,
|
||||
pub batch_size: i32,
|
||||
pub columns_batch: bool,
|
||||
pub ordering: Ordering,
|
||||
are_inputs_on_device: bool,
|
||||
are_outputs_on_device: bool,
|
||||
pub is_async: bool,
|
||||
pub ntt_algorithm: NttAlgorithm,
|
||||
}
|
||||
```
|
||||
|
||||
The `NTTConfig` struct is a configuration object used to specify parameters for an NTT instance.
|
||||
|
||||
#### Fields
|
||||
|
||||
- **`ctx: DeviceContext<'a>`**: Specifies the device context, including the device ID and the stream ID.
|
||||
|
||||
- **`coset_gen: S`**: Defines the coset generator used for coset (i)NTTs. By default, this is set to `S::one()`, indicating that no coset is being used.
|
||||
|
||||
- **`batch_size: i32`**: Determines the number of NTTs to compute in a single batch. The default value is 1, meaning that operations are performed on individual inputs without batching. Batch processing can significantly improve performance by leveraging parallelism in GPU computations.
|
||||
|
||||
- **`columns_batch`**: If true the function will compute the NTTs over the columns of the input matrix and not over the rows. Defaults to `false`.
|
||||
|
||||
- **`ordering: Ordering`**: Controls the ordering of inputs and outputs for the NTT operation. This field can be used to specify decimation strategies (in time or in frequency) and the type of butterfly algorithm (Cooley-Tukey or Gentleman-Sande). The ordering is crucial for compatibility with various algorithmic approaches and can impact the efficiency of the NTT.
|
||||
|
||||
- **`are_inputs_on_device: bool`**: Indicates whether the input data has been preloaded on the device memory. If `false` inputs will be copied from host to device.
|
||||
|
||||
- **`are_outputs_on_device: bool`**: Indicates whether the output data is preloaded in device memory. If `false` outputs will be copied from host to device. If the inputs and outputs are the same pointer NTT will be computed in place.
|
||||
|
||||
- **`is_async: bool`**: Specifies whether the NTT operation should be performed asynchronously. When set to `true`, the NTT function will not block the CPU, allowing other operations to proceed concurrently. Asynchronous execution requires careful synchronization to ensure data integrity and correctness.
|
||||
|
||||
- **`ntt_algorithm: NttAlgorithm`**: Can be one of `Auto`, `Radix2`, `MixedRadix`.
|
||||
`Auto` will select `Radix 2` or `Mixed Radix` algorithm based on heuristics.
|
||||
`Radix2` and `MixedRadix` will force the use of an algorithm regardless of the input size or other considerations. You should use one of these options when you know for sure that you want to
|
||||
|
||||
|
||||
#### Usage
|
||||
|
||||
Example initialization with default settings:
|
||||
|
||||
```rust
|
||||
let default_config = NTTConfig::default();
|
||||
```
|
||||
|
||||
Customizing the configuration:
|
||||
|
||||
```rust
|
||||
let custom_config = NTTConfig {
|
||||
ctx: custom_device_context,
|
||||
coset_gen: my_coset_generator,
|
||||
batch_size: 10,
|
||||
columns_batch: false,
|
||||
ordering: Ordering::kRN,
|
||||
are_inputs_on_device: true,
|
||||
are_outputs_on_device: true,
|
||||
is_async: false,
|
||||
ntt_algorithm: NttAlgorithm::MixedRadix,
|
||||
};
|
||||
```
|
||||
|
||||
|
||||
### Modes
|
||||
|
||||
NTT supports two different modes `Batch NTT` and `Single NTT`
|
||||
|
||||
You may toggle between single and batch NTT by simply configure `batch_size` to be larger then 1 in your `NTTConfig`.
|
||||
|
||||
```rust
|
||||
let mut cfg = ntt::get_default_ntt_config::<ScalarField>();
|
||||
cfg.batch_size = 10 // your ntt using this config will run in batch mode.
|
||||
```
|
||||
|
||||
`batch_size=1` would keep our NTT in single NTT mode.
|
||||
|
||||
Deciding weather to use `batch NTT` vs `single NTT` is highly dependent on your application and use case.
|
||||
|
||||
### Initializing the NTT Domain
|
||||
|
||||
Before performing NTT operations, its necessary to initialize the NTT domain, It only needs to be called once per GPU since the twiddles are cached.
|
||||
|
||||
```rust
|
||||
ScalarCfg::initialize_domain(ScalarField::from_ark(icicle_omega), &ctx).unwrap();
|
||||
```
|
||||
|
||||
### `initialize_domain`
|
||||
|
||||
```rust
|
||||
pub fn initialize_domain<F>(primitive_root: F, ctx: &DeviceContext) -> IcicleResult<()>
|
||||
where
|
||||
F: FieldImpl,
|
||||
<F as FieldImpl>::Config: NTT<F>;
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
- **`primitive_root`**: The primitive root of unity, chosen based on the maximum NTT size required for the computations. It must be of an order that is a power of two. This root is used to generate twiddle factors that are essential for the NTT operations.
|
||||
|
||||
- **`ctx`**: A reference to a `DeviceContext` specifying which device and stream the computation should be executed on.
|
||||
|
||||
#### Returns
|
||||
|
||||
- **`IcicleResult<()>`**: Will return an error if the operation fails.
|
||||
|
||||
### `initialize_domain_fast_twiddles_mode`
|
||||
|
||||
Similar to `initialize_domain`, `initialize_domain_fast_twiddles_mode` is a faster implementation and can be used for larger NTTs.
|
||||
|
||||
```rust
|
||||
pub fn initialize_domain_fast_twiddles_mode<F>(primitive_root: F, ctx: &DeviceContext) -> IcicleResult<()>
|
||||
where
|
||||
F: FieldImpl,
|
||||
<F as FieldImpl>::Config: NTT<F>;
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
- **`primitive_root`**: The primitive root of unity, chosen based on the maximum NTT size required for the computations. It must be of an order that is a power of two. This root is used to generate twiddle factors that are essential for the NTT operations.
|
||||
|
||||
- **`ctx`**: A reference to a `DeviceContext` specifying which device and stream the computation should be executed on.
|
||||
|
||||
#### Returns
|
||||
|
||||
- **`IcicleResult<()>`**: Will return an error if the operation fails.
|
||||
159
docs/docs/icicle/rust-bindings/vec-ops.md
Normal file
@@ -0,0 +1,159 @@
|
||||
# Vector Operations API
|
||||
|
||||
Our vector operations API which is part of `icicle-cuda-runtime` package, includes fundamental methods for addition, subtraction, and multiplication of vectors, with support for both host and device memory.
|
||||
|
||||
|
||||
## Supported curves
|
||||
|
||||
Vector operations are supported on the following curves:
|
||||
|
||||
`bls12-377`, `bls12-381`, `bn-254`, `bw6-761`, `grumpkin`
|
||||
|
||||
## Examples
|
||||
|
||||
### Addition of Scalars
|
||||
|
||||
```rust
|
||||
use icicle_bn254::curve::{ScalarCfg, ScalarField};
|
||||
use icicle_core::vec_ops::{add_scalars};
|
||||
|
||||
let test_size = 1 << 18;
|
||||
|
||||
let a: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(F::Config::generate_random(test_size));
|
||||
let b: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(F::Config::generate_random(test_size));
|
||||
let mut result: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(vec![F::zero(); test_size]);
|
||||
|
||||
let cfg = VecOpsConfig::default();
|
||||
add_scalars(&a, &b, &mut result, &cfg).unwrap();
|
||||
```
|
||||
|
||||
### Subtraction of Scalars
|
||||
|
||||
```rust
|
||||
use icicle_bn254::curve::{ScalarCfg, ScalarField};
|
||||
use icicle_core::vec_ops::{sub_scalars};
|
||||
|
||||
let test_size = 1 << 18;
|
||||
|
||||
let a: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(F::Config::generate_random(test_size));
|
||||
let b: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(F::Config::generate_random(test_size));
|
||||
let mut result: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(vec![F::zero(); test_size]);
|
||||
|
||||
let cfg = VecOpsConfig::default();
|
||||
sub_scalars(&a, &b, &mut result, &cfg).unwrap();
|
||||
```
|
||||
|
||||
### Multiplication of Scalars
|
||||
|
||||
```rust
|
||||
use icicle_bn254::curve::{ScalarCfg, ScalarField};
|
||||
use icicle_core::vec_ops::{mul_scalars};
|
||||
|
||||
let test_size = 1 << 18;
|
||||
|
||||
let a: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(F::Config::generate_random(test_size));
|
||||
let ones: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(vec![F::one(); test_size]);
|
||||
let mut result: HostOrDeviceSlice<'_, ScalarField> = HostOrDeviceSlice::on_host(vec![F::zero(); test_size]);
|
||||
|
||||
let cfg = VecOpsConfig::default();
|
||||
mul_scalars(&a, &ones, &mut result, &cfg).unwrap();
|
||||
```
|
||||
|
||||
|
||||
## Vector Operations Configuration
|
||||
|
||||
The `VecOpsConfig` struct encapsulates the settings for vector operations, including device context and operation modes.
|
||||
|
||||
### `VecOpsConfig`
|
||||
|
||||
Defines configuration parameters for vector operations.
|
||||
|
||||
```rust
|
||||
pub struct VecOpsConfig<'a> {
|
||||
pub ctx: DeviceContext<'a>,
|
||||
is_a_on_device: bool,
|
||||
is_b_on_device: bool,
|
||||
is_result_on_device: bool,
|
||||
is_result_montgomery_form: bool,
|
||||
pub is_async: bool,
|
||||
}
|
||||
```
|
||||
|
||||
#### Fields
|
||||
|
||||
- **`ctx: DeviceContext<'a>`**: Specifies the device context for the operation, including the device ID and memory pool.
|
||||
- **`is_a_on_device`**: Indicates if the first operand vector resides in device memory.
|
||||
- **`is_b_on_device`**: Indicates if the second operand vector resides in device memory.
|
||||
- **`is_result_on_device`**: Specifies if the result vector should be stored in device memory.
|
||||
- **`is_result_montgomery_form`**: Determines if the result should be in Montgomery form.
|
||||
- **`is_async`**: Enables asynchronous operation. If `true`, operations are non-blocking; otherwise, they block the current thread.
|
||||
|
||||
### Default Configuration
|
||||
|
||||
`VecOpsConfig` can be initialized with default settings tailored for a specific device:
|
||||
|
||||
```
|
||||
let cfg = VecOpsConfig::default();
|
||||
```
|
||||
|
||||
These are the default settings.
|
||||
|
||||
```rust
|
||||
impl<'a> Default for VecOpsConfig<'a> {
|
||||
fn default() -> Self {
|
||||
Self::default_for_device(DEFAULT_DEVICE_ID)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> VecOpsConfig<'a> {
|
||||
pub fn default_for_device(device_id: usize) -> Self {
|
||||
VecOpsConfig {
|
||||
ctx: DeviceContext::default_for_device(device_id),
|
||||
is_a_on_device: false,
|
||||
is_b_on_device: false,
|
||||
is_result_on_device: false,
|
||||
is_result_montgomery_form: false,
|
||||
is_async: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Vector Operations
|
||||
|
||||
Vector operations are implemented through the `VecOps` trait, these traits are implemented for all [supported curves](#supported-curves) providing methods for addition, subtraction, and multiplication of vectors.
|
||||
|
||||
### `VecOps` Trait
|
||||
|
||||
```rust
|
||||
pub trait VecOps<F> {
|
||||
fn add(
|
||||
a: &HostOrDeviceSlice<F>,
|
||||
b: &HostOrDeviceSlice<F>,
|
||||
result: &mut HostOrDeviceSlice<F>,
|
||||
cfg: &VecOpsConfig,
|
||||
) -> IcicleResult<()>;
|
||||
|
||||
fn sub(
|
||||
a: &HostOrDeviceSlice<F>,
|
||||
b: &HostOrDeviceSlice<F>,
|
||||
result: &mut HostOrDeviceSlice<F>,
|
||||
cfg: &VecOpsConfig,
|
||||
) -> IcicleResult<()>;
|
||||
|
||||
fn mul(
|
||||
a: &HostOrDeviceSlice<F>,
|
||||
b: &HostOrDeviceSlice<F>,
|
||||
result: &mut HostOrDeviceSlice<F>,
|
||||
cfg: &VecOpsConfig,
|
||||
) -> IcicleResult<()>;
|
||||
}
|
||||
```
|
||||
|
||||
#### Methods
|
||||
|
||||
All operations are element-wise operations, and the results placed into the `result` param. These operations are not in place.
|
||||
|
||||
- **`add`**: Computes the element-wise sum of two vectors.
|
||||
- **`sub`**: Computes the element-wise difference between two vectors.
|
||||
- **`mul`**: Performs element-wise multiplication of two vectors.
|
||||
117
docs/docs/icicle/supporting-additional-curves.md
Normal file
@@ -0,0 +1,117 @@
|
||||
# Supporting Additional Curves
|
||||
|
||||
We understand the need for ZK developers to use different curves, some common some more exotic. For this reason we designed ICICLE to allow developers to add any curve they desire.
|
||||
|
||||
## ICICLE Core
|
||||
|
||||
ICICLE core is very generic by design so all algorithms and primitives are designed to work based of configuration files [selected during compile](https://github.com/ingonyama-zk/icicle/blob/main/icicle/curves/curve_config.cuh) time. This is why we compile ICICLE Core per curve.
|
||||
|
||||
To add support for a new curve you must create a new file under [`icicle/curves`](https://github.com/ingonyama-zk/icicle/tree/main/icicle/curves). The file should be named `<curve_name>_params.cuh`.
|
||||
|
||||
### Adding curve_name_params.cuh
|
||||
|
||||
Start by copying `bn254_params.cuh` contents in your params file. Params should include:
|
||||
- **fq_config** - parameters of the Base field.
|
||||
- **limbs_count** - `ceil(field_byte_size / 4)`.
|
||||
- **modulus_bit_count** - bit-size of the modulus.
|
||||
- **num_of_reductions** - the number of times to reduce in reduce function. Use 2 if not sure.
|
||||
- **modulus** - modulus of the field.
|
||||
- **modulus_2** - modulus * 2.
|
||||
- **modulus_4** - modulus * 4.
|
||||
- **neg_modulus** - negated modulus.
|
||||
- **modulus_wide** - modulus represented as a double-sized integer.
|
||||
- **modulus_squared** - modulus**2 represented as a double-sized integer.
|
||||
- **modulus_squared_2** - 2 * modulus**2 represented as a double-sized integer.
|
||||
- **modulus_squared_4** - 4 * modulus**2 represented as a double-sized integer.
|
||||
- **m** - value used in multiplication. Can be computed as `2**(2*modulus_bit_count) // modulus`.
|
||||
- **one** - multiplicative identity.
|
||||
- **zero** - additive identity.
|
||||
- **montgomery_r** - `2 ** M % modulus` where M is a closest (larger than) bitsize multiple of 32. E.g. 384 or 768 for bls and bw curves respectively
|
||||
- **montgomery_r_inv** - `2 ** (-M) % modulus`
|
||||
- **fp_config** - parameters of the Scalar field.
|
||||
Same as fq_config, but with additional arguments:
|
||||
- **omegas_count** - [two-adicity](https://cryptologie.net/article/559/whats-two-adicity/) of the field. And thus the maximum size of NTT.
|
||||
- **omegas** - an array of omegas for NTTs. An array of size `omegas_count`. The ith element is equal to `1.nth_root(2**(2**(omegas_count-i)))`.
|
||||
- **inv** - an array of inverses of powers of two in a field. Ith element is equal to `(2 ** (i+1)) ** -1`.
|
||||
- **G1 generators points** - affine coordinates of the generator point.
|
||||
- **G2 generators points** - affine coordinates of the extension generator. Remove these if `G2` is not supported.
|
||||
- **Weierstrass b value** - base field element equal to value of `b` in the curve equation.
|
||||
- **Weierstrass b value G2** - base field element equal to value of `b` for the extension. Remove this if `G2` is not supported.
|
||||
|
||||
:::note
|
||||
|
||||
All the params are not in Montgomery form.
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
To convert number values into `storage` type you can use the following python function
|
||||
|
||||
```python
|
||||
import struct
|
||||
|
||||
def unpack(x, field_size):
|
||||
return ', '.join(["0x" + format(x, '08x') for x in struct.unpack('I' * (field_size) // 4, int(x).to_bytes(field_size, 'little'))])
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
We also require some changes to [`curve_config.cuh`](https://github.com/ingonyama-zk/icicle/blob/main/icicle/curves/curve_config.cuh#L16-L29), we need to add a new curve id.
|
||||
|
||||
```
|
||||
...
|
||||
|
||||
#define BN254 1
|
||||
#define BLS12_381 2
|
||||
#define BLS12_377 3
|
||||
#define BW6_761 4
|
||||
#define GRUMPKIN 5
|
||||
#define <curve_name> 6
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
Make sure to modify the [rest of the file](https://github.com/ingonyama-zk/icicle/blob/4beda3a900eda961f39af3a496f8184c52bf3b41/icicle/curves/curve_config.cuh#L16-L29) accordingly.
|
||||
|
||||
Finally we must modify the [`make` file](https://github.com/ingonyama-zk/icicle/blob/main/icicle/CMakeLists.txt#L64) to make sure we can compile our new curve.
|
||||
|
||||
```
|
||||
set(SUPPORTED_CURVES bn254;bls12_381;bls12_377;bw6_761;grumpkin;<curve_name>)
|
||||
```
|
||||
|
||||
### Adding Poseidon support
|
||||
|
||||
If you want your curve to implement a Poseidon hash function or a tree builder, you will need to pre-calculate its optimized parameters.
|
||||
Copy [constants_template.h](https://github.com/ingonyama-zk/icicle/blob/main/icicle/appUtils/poseidon/constants/constants_template.h) into `icicle/appUtils/poseidon/constants/<CURVE>_poseidon.h`. Run the [constants generation script](https://dev.ingonyama.com/icicle/primitives/poseidon#constants). The script will print the number of partial rounds and generate a `constants.bin` file. Use `xxd -i constants.bin` to parse the file into C declarations. Copy the `unsigned char constants_bin[]` contents inside your new file. Repeat this process for arities 2, 4, 8 and 11.
|
||||
|
||||
After you've generated the constants, add your curve in this [SUPPORTED_CURVES_WITH_POSEIDON](https://github.com/ingonyama-zk/icicle/blob/main/icicle/CMakeLists.txt#L72) in the `CMakeLists.txt`.
|
||||
|
||||
## Bindings
|
||||
|
||||
In order to support a new curve in the binding libraries you first must support it in ICICLE core.
|
||||
|
||||
### Rust
|
||||
|
||||
Go to [rust curves folder](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/rust/icicle-curves) and copy `icicle-curve-template` to a new folder named `icicle-<curve_name>`.
|
||||
|
||||
Find all the occurrences of `<CURVE>` placeholder inside the crate. (You can use `Ctrl+Shift+F` in VS Code or `grep -nr "<CURVE>"` in bash). You will then need to replace each occurrence with your new curve name.
|
||||
|
||||
#### Limbs
|
||||
|
||||
Go to your curve's `curve.rs` file and set `SCALAR_LIMBS`, `BASE_LIMBS` and `G2_BASE_LIMBS` (if G2 is needed) to a minimum number of `u64` required to store a single scalar field / base field element respectively.
|
||||
e.g. for bn254, scalar field is 254 bit so `SCALAR_LIMBS` is set to 4.
|
||||
|
||||
#### Primitives
|
||||
|
||||
If your curve doesn't support some of the primitives (ntt/msm/poseidon/merkle tree/), or you simply don't want to include it, just remove a corresponding module from `src` and then from `lib.rs`
|
||||
|
||||
#### G2
|
||||
|
||||
If your curve doesn't support G2 - remove all the code under `#[cfg(feature = "g2")]` and remove the feature from [Cargo.toml](https://github.com/ingonyama-zk/icicle/blob/main/wrappers/rust/icicle-curves/icicle-bn254/Cargo.toml#L29) and [build.rs](https://github.com/ingonyama-zk/icicle/blob/main/wrappers/rust/icicle-curves/icicle-bn254/build.rs#L15).
|
||||
|
||||
After this is done, add your new crate in the [global Cargo.toml](https://github.com/ingonyama-zk/icicle/tree/main/wrappers/rust/Cargo.toml).
|
||||
|
||||
### Golang
|
||||
|
||||
Golang is WIP in v1, coming soon. Please checkout a previous [release v0.1.0](https://github.com/ingonyama-zk/icicle/releases/tag/v0.1.0) for golang bindings.
|
||||
47
docs/docs/introduction.md
Normal file
@@ -0,0 +1,47 @@
|
||||
---
|
||||
slug: /
|
||||
displayed_sidebar: GettingStartedSidebar
|
||||
title: ''
|
||||
---
|
||||
|
||||
# Welcome to Ingonyama's Developer Documentation
|
||||
|
||||
Ingonyama is a next-generation semiconductor company, focusing on Zero-Knowledge Proof hardware acceleration. We build accelerators for advanced cryptography, unlocking real-time applications. Our focus is on democratizing access to compute intensive cryptography and making it accessible for developers to build on top of.
|
||||
|
||||
Currently our flagship products are:
|
||||
|
||||
- **ICICLE**:
|
||||
[ICICLE](https://github.com/ingonyama-zk/icicle) is a fully featured GPU accelerated cryptography library for building ZK provers. ICICLE allows you to accelerate your ZK existing protocols in a matter of hours or implement your protocol from scratch on GPU.
|
||||
|
||||
---
|
||||
|
||||
## Our current take on hardware acceleration
|
||||
|
||||
We believe GPUs are as important for ZK as for AI.
|
||||
|
||||
- GPUs are a perfect match for ZK compute - around 97% of ZK protocol runtime is parallel by nature.
|
||||
- GPUs are simple for developers to use and scale compared to other hardware platforms.
|
||||
- GPUs are extremely competitive in terms of power / performance and price (3x cheaper compared to FPGAs).
|
||||
- GPUs are popular and readily available.
|
||||
|
||||
For a more in-depth understanding on this topic we suggest you read [our article on the subject](https://www.ingonyama.com/blog/revisiting-paradigm-hardware-acceleration-for-zero-knowledge-proofs).
|
||||
|
||||
Despite our current focus on GPUs we are still hard at work developing a ZPU (ZK Processing Unit), with the goal of offering a programmable hardware platform for ZK. To read more about ZPUs we suggest you read this [article](https://medium.com/@ingonyama/zpu-the-zero-knowledge-processing-unit-f886a48e00e0).
|
||||
|
||||
## ICICLE
|
||||
|
||||
[ICICLE](https://github.com/ingonyama-zk/icicle) is a cryptography library for ZK using GPUs.
|
||||
ICICLE implements blazing fast cryptographic primitives such as EC operations, MSM, NTT, Poseidon hash and more on GPU.
|
||||
|
||||
ICICLE is designed to be easy to use, developers don't have to touch a single line of CUDA code. Our Rust and Golang bindings allow your team to transition from CPU to GPU with minimal changes.
|
||||
|
||||
Learn more about ICICLE and GPUs [here][ICICLE-OVERVIEW].
|
||||
|
||||
## Get in Touch
|
||||
|
||||
If you have any questions, ideas, or are thinking of building something in this space join the discussion on [Discord]. You can explore our code on [github](https://github.com/ingonyama-zk) or read some of [our research papers](https://github.com/ingonyama-zk/papers).
|
||||
|
||||
Follow us on [Twitter](https://x.com/Ingo_zk) and [YouTube](https://www.youtube.com/@ingo_ZK) and sign up for our [mailing list](https://wkf.ms/3LKCbdj) to get our latest announcements.
|
||||
|
||||
[ICICLE-OVERVIEW]: ./icicle/overview.md
|
||||
[Discord]: https://discord.gg/6vYrE7waPj
|
||||
171
docs/docusaurus.config.js
Normal file
@@ -0,0 +1,171 @@
|
||||
// @ts-check
|
||||
const lightCodeTheme = require('prism-react-renderer/themes/github');
|
||||
const darkCodeTheme = require('prism-react-renderer/themes/dracula');
|
||||
const math = require('remark-math');
|
||||
const katex = require('rehype-katex');
|
||||
|
||||
/** @type {import('@docusaurus/types').Config} */
|
||||
const config = {
|
||||
title: 'Ingonyama Developer Documentation',
|
||||
tagline: 'Ingonyama is a next-generation semiconductor company, focusing on Zero-Knowledge Proof hardware acceleration. We build accelerators for advanced cryptography, unlocking real-time applications.',
|
||||
url: 'https://dev.ingonyama.com/',
|
||||
baseUrl: '/',
|
||||
onBrokenLinks: 'throw',
|
||||
onBrokenMarkdownLinks: 'warn',
|
||||
favicon: 'img/logo.png',
|
||||
organizationName: 'ingonyama-zk',
|
||||
projectName: 'developer-docs',
|
||||
trailingSlash: false,
|
||||
deploymentBranch: "main",
|
||||
presets: [
|
||||
[
|
||||
'classic',
|
||||
/** @type {import('@docusaurus/preset-classic').Options} */
|
||||
({
|
||||
docs: {
|
||||
showLastUpdateAuthor: true,
|
||||
showLastUpdateTime: true,
|
||||
routeBasePath: '/',
|
||||
remarkPlugins: [math, require('mdx-mermaid')],
|
||||
rehypePlugins: [katex],
|
||||
sidebarPath: require.resolve('./sidebars.js'),
|
||||
editUrl: 'https://github.com/ingonyama-zk/icicle/tree/main',
|
||||
},
|
||||
blog: {
|
||||
remarkPlugins: [math, require('mdx-mermaid')],
|
||||
rehypePlugins: [katex],
|
||||
showReadingTime: true,
|
||||
editUrl: 'https://github.com/ingonyama-zk/icicle/tree/main',
|
||||
},
|
||||
pages: {},
|
||||
theme: {
|
||||
customCss: require.resolve('./src/css/custom.css'),
|
||||
},
|
||||
}),
|
||||
],
|
||||
],
|
||||
|
||||
stylesheets: [
|
||||
{
|
||||
href: 'https://cdn.jsdelivr.net/npm/katex@0.13.24/dist/katex.min.css',
|
||||
type: 'text/css',
|
||||
integrity:
|
||||
'sha384-odtC+0UGzzFL/6PNoE8rX/SPcQDXBJ+uRepguP4QkPCm2LBxH3FA3y+fKSiJ+AmM',
|
||||
crossorigin: 'anonymous',
|
||||
},
|
||||
],
|
||||
|
||||
scripts: [
|
||||
{
|
||||
src: 'https://plausible.io/js/script.js',
|
||||
'data-domain':'ingonyama.com',
|
||||
defer: true,
|
||||
},
|
||||
],
|
||||
|
||||
themeConfig:
|
||||
/** @type {import('@docusaurus/preset-classic').ThemeConfig} */
|
||||
({
|
||||
metadata: [
|
||||
{name: 'twitter:card', content: 'summary_large_image'},
|
||||
{name: 'twitter:site', content: '@Ingo_zk'},
|
||||
{name: 'twitter:title', content: 'Ingonyama Developer Documentation'},
|
||||
{name: 'twitter:description', content: 'Ingonyama is a next-generation semiconductor company focusing on Zero-Knowledge Proof hardware acceleration...'},
|
||||
{name: 'twitter:image', content: 'https://dev.ingonyama.com/img/logo.png'},
|
||||
// title
|
||||
{name: 'og:title', content: 'Ingonyama Developer Documentation'},
|
||||
{name: 'og:description', content: 'Ingonyama is a next-generation semiconductor company focusing on Zero-Knowledge Proof hardware acceleration...'},
|
||||
{name: 'og:image', content: 'https://dev.ingonyama.com/img/logo.png'},
|
||||
],
|
||||
hideableSidebar: true,
|
||||
colorMode: {
|
||||
defaultMode: 'dark',
|
||||
respectPrefersColorScheme: false,
|
||||
},
|
||||
algolia: {
|
||||
// The application ID provided by Algolia
|
||||
appId: 'PZY4KJBBBK',
|
||||
|
||||
// Public API key: it is safe to commit it
|
||||
apiKey: '2cc940a6e0ef5c117f4f44e7f4e6e20b',
|
||||
|
||||
indexName: 'ingonyama',
|
||||
|
||||
// Optional: see doc section below
|
||||
contextualSearch: true,
|
||||
|
||||
// Optional: Specify domains where the navigation should occur through window.location instead on history.push. Useful when our Algolia config crawls multiple documentation sites and we want to navigate with window.location.href to them.
|
||||
externalUrlRegex: 'external\\.com|domain\\.com',
|
||||
|
||||
// Optional: Replace parts of the item URLs from Algolia. Useful when using the same search index for multiple deployments using a different baseUrl. You can use regexp or string in the `from` param. For example: localhost:3000 vs myCompany.com/docs
|
||||
replaceSearchResultPathname: {
|
||||
from: '/docs/', // or as RegExp: /\/docs\//
|
||||
to: '/',
|
||||
},
|
||||
|
||||
// Optional: Algolia search parameters
|
||||
searchParameters: {},
|
||||
|
||||
// Optional: path for search page that enabled by default (`false` to disable it)
|
||||
searchPagePath: 'search',
|
||||
},
|
||||
navbar: {
|
||||
title: 'Ingonyama Developer Documentation',
|
||||
logo: {
|
||||
alt: 'Ingonyama Logo',
|
||||
src: 'img/logo.png',
|
||||
},
|
||||
items: [
|
||||
{
|
||||
position: 'left',
|
||||
label: 'Docs',
|
||||
to: '/',
|
||||
},
|
||||
{
|
||||
href: 'https://github.com/ingonyama-zk',
|
||||
position: 'right',
|
||||
label: 'GitHub',
|
||||
},
|
||||
{
|
||||
href: 'https://www.ingonyama.com/ingopedia/glossary',
|
||||
position: 'right',
|
||||
label: 'Ingopedia',
|
||||
},
|
||||
{
|
||||
type: 'dropdown',
|
||||
position: 'right',
|
||||
label: 'Community',
|
||||
items: [
|
||||
{
|
||||
label: 'Discord',
|
||||
href: 'https://discord.gg/6vYrE7waPj',
|
||||
},
|
||||
{
|
||||
label: 'Twitter',
|
||||
href: 'https://x.com/Ingo_zk',
|
||||
},
|
||||
{
|
||||
label: 'YouTube',
|
||||
href: 'https://www.youtube.com/@ingo_ZK'
|
||||
},
|
||||
{
|
||||
label: 'Mailing List',
|
||||
href: 'https://wkf.ms/3LKCbdj',
|
||||
}
|
||||
]
|
||||
},
|
||||
|
||||
],
|
||||
},
|
||||
footer: {
|
||||
copyright: `Copyright © ${new Date().getFullYear()} Ingonyama, Inc. Built with Docusaurus.`,
|
||||
},
|
||||
prism: {
|
||||
theme: lightCodeTheme,
|
||||
darkTheme: darkCodeTheme,
|
||||
},
|
||||
image: 'img/logo.png',
|
||||
}),
|
||||
};
|
||||
|
||||
module.exports = config;
|
||||
13681
docs/package-lock.json
generated
Normal file
48
docs/package.json
Normal file
@@ -0,0 +1,48 @@
|
||||
{
|
||||
"name": "docusaurus",
|
||||
"version": "0.0.0",
|
||||
"private": true,
|
||||
"description": "Ingonyama - developer docs",
|
||||
"scripts": {
|
||||
"docusaurus": "docusaurus",
|
||||
"start": "docusaurus start",
|
||||
"build": "docusaurus build",
|
||||
"swizzle": "docusaurus swizzle",
|
||||
"deploy": "docusaurus deploy",
|
||||
"clear": "docusaurus clear",
|
||||
"serve": "docusaurus serve",
|
||||
"write-translations": "docusaurus write-translations",
|
||||
"write-heading-ids": "docusaurus write-heading-ids",
|
||||
"dev": "docusaurus start",
|
||||
"format": "prettier --write '**/*.md'"
|
||||
},
|
||||
"dependencies": {
|
||||
"@docusaurus/core": "2.0.0-beta.18",
|
||||
"@docusaurus/preset-classic": "2.0.0-beta.18",
|
||||
"@mdx-js/react": "^1.6.22",
|
||||
"clsx": "^1.1.1",
|
||||
"hast-util-is-element": "1.1.0",
|
||||
"mdx-mermaid": "^1.2.2",
|
||||
"mermaid": "^9.1.2",
|
||||
"prism-react-renderer": "^1.3.1",
|
||||
"react": "^17.0.2",
|
||||
"react-dom": "^17.0.2",
|
||||
"rehype-katex": "5",
|
||||
"remark-math": "3"
|
||||
},
|
||||
"browserslist": {
|
||||
"production": [
|
||||
">0.5%",
|
||||
"not dead",
|
||||
"not op_mini all"
|
||||
],
|
||||
"development": [
|
||||
"last 1 chrome version",
|
||||
"last 1 firefox version",
|
||||
"last 1 safari version"
|
||||
]
|
||||
},
|
||||
"devDependencies": {
|
||||
"prettier": "^3.2.4"
|
||||
}
|
||||
}
|
||||
10
docs/sandbox.config.json
Normal file
@@ -0,0 +1,10 @@
|
||||
{
|
||||
"infiniteLoopProtection": true,
|
||||
"hardReloadOnChange": true,
|
||||
"view": "browser",
|
||||
"template": "docusaurus",
|
||||
"node": "14",
|
||||
"container": {
|
||||
"node": "14"
|
||||
}
|
||||
}
|
||||
197
docs/sidebars.js
Normal file
@@ -0,0 +1,197 @@
|
||||
module.exports = {
|
||||
GettingStartedSidebar: [
|
||||
{
|
||||
type: "doc",
|
||||
label: "Introduction",
|
||||
id: "introduction",
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "ICICLE",
|
||||
link: {
|
||||
type: `doc`,
|
||||
id: 'icicle/overview',
|
||||
},
|
||||
collapsed: false,
|
||||
items: [
|
||||
{
|
||||
type: "doc",
|
||||
label: "Getting started",
|
||||
id: "icicle/introduction"
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "ICICLE Provers",
|
||||
id: "icicle/integrations"
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Golang bindings",
|
||||
link: {
|
||||
type: `doc`,
|
||||
id: "icicle/golang-bindings",
|
||||
},
|
||||
collapsed: true,
|
||||
items: [
|
||||
{
|
||||
type: "category",
|
||||
label: "MSM",
|
||||
link: {
|
||||
type: `doc`,
|
||||
id: "icicle/golang-bindings/msm",
|
||||
},
|
||||
collapsed: true,
|
||||
items: [
|
||||
{
|
||||
type: "doc",
|
||||
label: "MSM pre computation",
|
||||
id: "icicle/golang-bindings/msm-pre-computation",
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "NTT",
|
||||
id: "icicle/golang-bindings/ntt",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Vector operations",
|
||||
id: "icicle/golang-bindings/vec-ops",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Multi GPU Support",
|
||||
id: "icicle/golang-bindings/multi-gpu",
|
||||
},
|
||||
]
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Rust bindings",
|
||||
link: {
|
||||
type: `doc`,
|
||||
id: "icicle/rust-bindings",
|
||||
},
|
||||
collapsed: true,
|
||||
items: [
|
||||
{
|
||||
type: "category",
|
||||
label: "MSM",
|
||||
link: {
|
||||
type: `doc`,
|
||||
id: "icicle/rust-bindings/msm",
|
||||
},
|
||||
collapsed: true,
|
||||
items: [
|
||||
{
|
||||
type: "doc",
|
||||
label: "MSM pre computation",
|
||||
id: "icicle/rust-bindings/msm-pre-computation",
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "NTT",
|
||||
id: "icicle/rust-bindings/ntt",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Vector operations",
|
||||
id: "icicle/rust-bindings/vec-ops",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Multi GPU Support",
|
||||
id: "icicle/rust-bindings/multi-gpu",
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Primitives",
|
||||
link: {
|
||||
type: `doc`,
|
||||
id: 'icicle/primitives/overview',
|
||||
},
|
||||
collapsed: true,
|
||||
items: [
|
||||
{
|
||||
type: "doc",
|
||||
label: "MSM",
|
||||
id: "icicle/primitives/msm",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "NTT",
|
||||
id: "icicle/primitives/ntt",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Poseidon Hash",
|
||||
id: "icicle/primitives/poseidon",
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Multi GPU Support",
|
||||
id: "icicle/multi-gpu",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Supporting additional curves",
|
||||
id: "icicle/supporting-additional-curves",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Google Colab Instructions",
|
||||
id: "icicle/colab-instructions",
|
||||
},
|
||||
]
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "ZK Containers",
|
||||
id: "ZKContainers",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Ingonyama Grant program",
|
||||
id: "grants",
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
label: "Contributor guide",
|
||||
id: "contributor-guide",
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Additional Resources",
|
||||
collapsed: false,
|
||||
items: [
|
||||
{
|
||||
type: "link",
|
||||
label: "YouTube",
|
||||
href: "https://www.youtube.com/@ingo_ZK"
|
||||
},
|
||||
{
|
||||
type: "link",
|
||||
label: "Ingonyama Blog",
|
||||
href: "https://www.ingonyama.com/blog"
|
||||
},
|
||||
{
|
||||
type: "link",
|
||||
label: "Ingopedia",
|
||||
href: "https://www.ingonyama.com/ingopedia"
|
||||
},
|
||||
{
|
||||
href: 'https://github.com/ingonyama-zk',
|
||||
type: "link",
|
||||
label: 'GitHub',
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
};
|
||||
59
docs/src/css/custom.css
Normal file
@@ -0,0 +1,59 @@
|
||||
/**
|
||||
* Any CSS included here will be global. The classic template
|
||||
* bundles Infima by default. Infima is a CSS framework designed to
|
||||
* work well for content-centric websites.
|
||||
*/
|
||||
|
||||
/* You can override the default Infima variables here. */
|
||||
:root {
|
||||
--ifm-color-primary: #FFCB00;
|
||||
--ifm-color-primary-dark: #FFCB00;
|
||||
--ifm-color-primary-darker: #FFCB00;
|
||||
--ifm-color-primary-darkest: #FFCB00;
|
||||
--ifm-color-primary-light: #FFCB00;
|
||||
--ifm-color-primary-lighter: #FFCB00;
|
||||
--ifm-color-primary-lightest: #FFCB00;
|
||||
--ifm-code-font-size: 95%;
|
||||
}
|
||||
|
||||
/* For readability concerns, you should choose a lighter palette in dark mode. */
|
||||
[data-theme='dark'] {
|
||||
--ifm-color-primary: #FFCB00;
|
||||
--ifm-color-primary-dark: #FFCB00;
|
||||
--ifm-color-primary-darker:#FFCB00;
|
||||
--ifm-color-primary-darkest: #FFCB00;
|
||||
--ifm-color-primary-light:#FFCB00;
|
||||
--ifm-color-primary-lighter: #FFCB00;
|
||||
--ifm-color-primary-lightest: #FFCB00;
|
||||
}
|
||||
|
||||
.docusaurus-highlight-code-line {
|
||||
background-color: rgba(0, 0, 0, 0.1);
|
||||
display: block;
|
||||
margin: 0 calc(-1 * var(--ifm-pre-padding));
|
||||
padding: 0 var(--ifm-pre-padding);
|
||||
}
|
||||
|
||||
[data-theme='dark'] .docusaurus-highlight-code-line {
|
||||
background-color: rgba(0, 0, 0, 0.3);
|
||||
}
|
||||
|
||||
/* Mermaid elements must be changed to be visible in dark mode */
|
||||
[data-theme='dark'] .mermaid .messageLine0, .messageLine1 {
|
||||
filter: invert(51%) sepia(84%) saturate(405%) hue-rotate(21deg) brightness(94%) contrast(91%) !important;
|
||||
}
|
||||
/* NOTE Must be a separate specification from the above or it won't toggle off */
|
||||
[data-theme='dark'] .mermaid .flowchart-link {
|
||||
filter: invert(51%) sepia(84%) saturate(405%) hue-rotate(21deg) brightness(94%) contrast(91%) !important;
|
||||
}
|
||||
[data-theme='dark'] .mermaid .cluster-label {
|
||||
filter: invert(51%) sepia(84%) saturate(405%) hue-rotate(21deg) brightness(94%) contrast(91%) !important;
|
||||
}
|
||||
[data-theme='dark'] .mermaid .messageText {
|
||||
stroke:none !important; fill:white !important;
|
||||
}
|
||||
|
||||
/* Our additions */
|
||||
.anchor {
|
||||
scroll-margin-top: 50pt;
|
||||
}
|
||||
0
docs/static/.nojekyll
vendored
Normal file
BIN
docs/static/img/apilevels.png
vendored
Normal file
|
After Width: | Height: | Size: 170 KiB |
BIN
docs/static/img/architecture-high-level.png
vendored
Normal file
|
After Width: | Height: | Size: 103 KiB |
BIN
docs/static/img/architecture-overview.png
vendored
Normal file
|
After Width: | Height: | Size: 76 KiB |
BIN
docs/static/img/architecture-zkcontainer.png
vendored
Normal file
|
After Width: | Height: | Size: 204 KiB |
BIN
docs/static/img/colab_change_runtime.png
vendored
Normal file
|
After Width: | Height: | Size: 26 KiB |
BIN
docs/static/img/logo.png
vendored
Normal file
|
After Width: | Height: | Size: 116 KiB |
BIN
docs/static/img/t4_gpu.png
vendored
Normal file
|
After Width: | Height: | Size: 34 KiB |
23
examples/ZKContainer.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# ZKContainer
|
||||
|
||||
We recommend using [ZKContainer](https://ingonyama.com/blog/Immanuel-ZKDC), where we have already preinstalled all the required dependencies, to run Icicle examples.
|
||||
To use our containers you will need [Docker](https://www.docker.com/) and [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html).
|
||||
|
||||
In each example directory, ZKContainer files are located in a subdirectory `.devcontainer`.
|
||||
|
||||
- File `Dockerfile` specifies how to build an image of a ZKContainer.
|
||||
- File `devcontainer.json` enables running ZKContainer from Visual Studio Code.
|
||||
|
||||
## Running ZKContainer from shell
|
||||
|
||||
```sh
|
||||
docker build -t icicle-example-poseidon -f .devcontainer/Dockerfile .
|
||||
```
|
||||
|
||||
To run the example interactively, start the container
|
||||
|
||||
```sh
|
||||
docker run -it --rm --gpus all -v .:/icicle-example icicle-example-poseidon
|
||||
```
|
||||
|
||||
Inside the container, run the commands for building the library for whichever [build system](../README.md#build-systems) you choose to use.
|
||||
25
examples/c++/msm/.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,25 @@
|
||||
# Make sure NVIDIA Container Toolkit is installed on your host
|
||||
|
||||
# Use the specified base image
|
||||
FROM nvidia/cuda:12.0.0-devel-ubuntu22.04
|
||||
|
||||
# Update and install dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
cmake \
|
||||
curl \
|
||||
build-essential \
|
||||
git \
|
||||
libboost-all-dev \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Clone Icicle from a GitHub repository
|
||||
RUN git clone https://github.com/ingonyama-zk/icicle.git /opt/icicle
|
||||
|
||||
# Set the working directory in the container
|
||||
WORKDIR /icicle-example
|
||||
|
||||
# Specify the default command for the container
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
|
||||
|
||||
21
examples/c++/msm/.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,21 @@
|
||||
{
|
||||
"name": "Icicle Examples: msm",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile"
|
||||
},
|
||||
"runArgs": [
|
||||
"--gpus",
|
||||
"all"
|
||||
],
|
||||
"postCreateCommand": [
|
||||
"nvidia-smi"
|
||||
],
|
||||
"customizations": {
|
||||
"vscode": {
|
||||
"extensions": [
|
||||
"ms-vscode.cmake-tools",
|
||||
"ms-python.python"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
25
examples/c++/msm/CMakeLists.txt
Normal file
@@ -0,0 +1,25 @@
|
||||
cmake_minimum_required(VERSION 3.18)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CUDA_STANDARD 17)
|
||||
set(CMAKE_CUDA_STANDARD_REQUIRED TRUE)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.24.0")
|
||||
set(CMAKE_CUDA_ARCHITECTURES ${CUDA_ARCH})
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES native) # on 3.24+, on earlier it is ignored, and the target is not passed
|
||||
endif ()
|
||||
project(icicle LANGUAGES CUDA CXX)
|
||||
|
||||
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr")
|
||||
set(CMAKE_CUDA_FLAGS_RELEASE "")
|
||||
set(CMAKE_CUDA_FLAGS_DEBUG "${CMAKE_CUDA_FLAGS_DEBUG} -g -G -O0")
|
||||
# change the path to your Icicle location
|
||||
include_directories("../../../icicle")
|
||||
add_executable(
|
||||
example
|
||||
example.cu
|
||||
)
|
||||
|
||||
find_library(NVML_LIBRARY nvidia-ml PATHS /usr/local/cuda-12.0/targets/x86_64-linux/lib/stubs/ )
|
||||
target_link_libraries(example ${NVML_LIBRARY})
|
||||
set_target_properties(example PROPERTIES CUDA_SEPARABLE_COMPILATION ON)
|
||||
52
examples/c++/msm/README.md
Normal file
@@ -0,0 +1,52 @@
|
||||
# Icicle example: Muli-Scalar Multiplication (MSM)
|
||||
|
||||
## Best-Practices
|
||||
|
||||
We recommend to run our examples in [ZK-containers](../../ZK-containers.md) to save your time and mental energy.
|
||||
|
||||
## Key-Takeaway
|
||||
|
||||
`Icicle` provides CUDA C++ template function `MSM` to accelerate [Multi-Scalar Multiplication](https://github.com/ingonyama-zk/ingopedia/blob/master/src/msm.md).
|
||||
|
||||
## Concise Usage Explanation
|
||||
|
||||
1. Select the curve
|
||||
2. Include an MSM template
|
||||
3. Configure MSM
|
||||
4. Call the template
|
||||
|
||||
```c++
|
||||
#define CURVE_ID 1
|
||||
#include "icicle/appUtils/msm/msm.cu"
|
||||
...
|
||||
msm::MSMConfig config = {...};
|
||||
...
|
||||
msm::MSM<scalar_t, affine_t, projective_t>(scalars, points, size, config, &result);
|
||||
```
|
||||
|
||||
In this example we use `BN254` curve (`CURVE_ID=1`). The function computes $result = \sum_{i=0}^{size-1} scalars[i] \cdot points[i]$, where input `points[]` use affine coordinates, and `result` uses projective coordinates.
|
||||
|
||||
**Parameters:**
|
||||
|
||||
The configuration is passed to the kernel as a structure of type `msm::MSMConfig`. Some of the most important fields are listed below:
|
||||
|
||||
- `are_scalars_on_device`, `are_points_on_device`, `are_results_on_device`: location of the data
|
||||
|
||||
- `is_async`: blocking vs. non-blocking kernel call
|
||||
|
||||
- `large_bucket_factor`: distinguishes between large bucket and normal bucket sizes. If there is a scalar distribution that is skewed heavily to a few values we can operate on those separately from the rest of the values. The ideal value here can vary by circuit (based on the distribution of scalars) but start with 10 and adjust to see if it improves performance.
|
||||
|
||||
## Running the example
|
||||
|
||||
- `cd` to your example directory
|
||||
- compile with `./compile.sh`
|
||||
- run with `./run.sh`
|
||||
|
||||
## What's in the example
|
||||
|
||||
1. Define the parameters of MSM
|
||||
2. Generate random inputs on-host
|
||||
3. Configure and execute MSM using on-host data
|
||||
4. Copy inputs on-device
|
||||
5. Configure and execute MSM using on-device data
|
||||
6. Repeat the above steps for G2 points
|
||||
9
examples/c++/msm/compile.sh
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Exit immediately on error
|
||||
set -e
|
||||
|
||||
rm -rf build
|
||||
mkdir -p build
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
180
examples/c++/msm/example.cu
Normal file
@@ -0,0 +1,180 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
|
||||
#define G2_DEFINED
|
||||
#define CURVE_ID 1
|
||||
// include MSM template
|
||||
#include "appUtils/msm/msm.cu"
|
||||
using namespace curve_config;
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
std::cout << "Icicle example: Muli-Scalar Multiplication (MSM)" << std::endl;
|
||||
std::cout << "Example parameters" << std::endl;
|
||||
int batch_size = 1;
|
||||
std::cout << "Batch size: " << batch_size << std::endl;
|
||||
unsigned msm_size = 1048576;
|
||||
std::cout << "MSM size: " << msm_size << std::endl;
|
||||
int N = batch_size * msm_size;
|
||||
|
||||
std::cout << "Part I: use G1 points" << std::endl;
|
||||
|
||||
std::cout << "Generating random inputs on-host" << std::endl;
|
||||
scalar_t* scalars = new scalar_t[N];
|
||||
affine_t* points = new affine_t[N];
|
||||
projective_t result;
|
||||
scalar_t::RandHostMany(scalars, N);
|
||||
projective_t::RandHostManyAffine(points, N);
|
||||
|
||||
std::cout << "Using default MSM configuration with on-host inputs" << std::endl;
|
||||
// auto config = msm::DefaultMSMConfig();
|
||||
device_context::DeviceContext ctx = device_context::get_default_device_context();
|
||||
msm::MSMConfig config = {
|
||||
ctx, // ctx
|
||||
0, // points_size
|
||||
1, // precompute_factor
|
||||
0, // c
|
||||
0, // bitsize
|
||||
10, // large_bucket_factor
|
||||
1, // batch_size
|
||||
false, // are_scalars_on_device
|
||||
false, // are_scalars_montgomery_form
|
||||
false, // are_points_on_device
|
||||
false, // are_points_montgomery_form
|
||||
false, // are_results_on_device
|
||||
false, // is_big_triangle
|
||||
false, // is_async
|
||||
};
|
||||
config.batch_size = batch_size;
|
||||
|
||||
std::cout << "Running MSM kernel with on-host inputs" << std::endl;
|
||||
// Create two events to time the MSM kernel
|
||||
cudaStream_t stream = config.ctx.stream;
|
||||
cudaEvent_t start, stop;
|
||||
float time;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
// Record the start event on the stream
|
||||
cudaEventRecord(start, stream);
|
||||
// Execute the MSM kernel
|
||||
msm::MSM<scalar_t, affine_t, projective_t>(scalars, points, msm_size, config, &result);
|
||||
// Record the stop event on the stream
|
||||
cudaEventRecord(stop, stream);
|
||||
// Wait for the stop event to complete
|
||||
cudaEventSynchronize(stop);
|
||||
// Calculate the elapsed time between the start and stop events
|
||||
cudaEventElapsedTime(&time, start, stop);
|
||||
// Destroy the events
|
||||
cudaEventDestroy(start);
|
||||
cudaEventDestroy(stop);
|
||||
// Print the elapsed time
|
||||
std::cout << "Kernel runtime: " << std::fixed << std::setprecision(3) << time * 1e-3 << " sec." << std::endl;
|
||||
// Print the result
|
||||
std::cout << projective_t::to_affine(result) << std::endl;
|
||||
|
||||
std::cout << "Copying inputs on-device" << std::endl;
|
||||
scalar_t* scalars_d;
|
||||
affine_t* points_d;
|
||||
projective_t* result_d;
|
||||
cudaMalloc(&scalars_d, sizeof(scalar_t) * N);
|
||||
cudaMalloc(&points_d, sizeof(affine_t) * N);
|
||||
cudaMalloc(&result_d, sizeof(projective_t));
|
||||
cudaMemcpy(scalars_d, scalars, sizeof(scalar_t) * N, cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(points_d, points, sizeof(affine_t) * N, cudaMemcpyHostToDevice);
|
||||
|
||||
std::cout << "Reconfiguring MSM to use on-device inputs" << std::endl;
|
||||
config.are_results_on_device = true;
|
||||
config.are_scalars_on_device = true;
|
||||
config.are_points_on_device = true;
|
||||
|
||||
std::cout << "Running MSM kernel with on-device inputs" << std::endl;
|
||||
// Create two events to time the MSM kernel
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
// Record the start event on the stream
|
||||
cudaEventRecord(start, stream);
|
||||
// Execute the MSM kernel
|
||||
msm::MSM<scalar_t, affine_t, projective_t>(scalars_d, points_d, msm_size, config, result_d);
|
||||
// Record the stop event on the stream
|
||||
cudaEventRecord(stop, stream);
|
||||
// Wait for the stop event to complete
|
||||
cudaEventSynchronize(stop);
|
||||
// Calculate the elapsed time between the start and stop events
|
||||
cudaEventElapsedTime(&time, start, stop);
|
||||
// Destroy the events
|
||||
cudaEventDestroy(start);
|
||||
cudaEventDestroy(stop);
|
||||
// Print the elapsed time
|
||||
std::cout << "Kernel runtime: " << std::fixed << std::setprecision(3) << time * 1e-3 << " sec." << std::endl;
|
||||
// Copy the result back to the host
|
||||
cudaMemcpy(&result, result_d, sizeof(projective_t), cudaMemcpyDeviceToHost);
|
||||
// Print the result
|
||||
std::cout << projective_t::to_affine(result) << std::endl;
|
||||
// Free the device memory
|
||||
cudaFree(scalars_d);
|
||||
cudaFree(points_d);
|
||||
cudaFree(result_d);
|
||||
// Free the host memory, keep scalars for G2 example
|
||||
delete[] points;
|
||||
|
||||
std::cout << "Part II: use G2 points" << std::endl;
|
||||
|
||||
std::cout << "Generating random inputs on-host" << std::endl;
|
||||
// use the same scalars
|
||||
g2_affine_t* g2_points = new g2_affine_t[N];
|
||||
g2_projective_t::RandHostManyAffine(g2_points, N);
|
||||
|
||||
std::cout << "Reconfiguring MSM to use on-host inputs" << std::endl;
|
||||
config.are_results_on_device = false;
|
||||
config.are_scalars_on_device = false;
|
||||
config.are_points_on_device = false;
|
||||
g2_projective_t g2_result;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
cudaEventRecord(start, stream);
|
||||
msm::MSM<scalar_t, g2_affine_t, g2_projective_t>(scalars, g2_points, msm_size, config, &g2_result);
|
||||
cudaEventRecord(stop, stream);
|
||||
cudaEventSynchronize(stop);
|
||||
cudaEventElapsedTime(&time, start, stop);
|
||||
cudaEventDestroy(start);
|
||||
cudaEventDestroy(stop);
|
||||
std::cout << "Kernel runtime: " << std::fixed << std::setprecision(3) << time * 1e-3 << " sec." << std::endl;
|
||||
std::cout << g2_projective_t::to_affine(g2_result) << std::endl;
|
||||
|
||||
std::cout << "Copying inputs on-device" << std::endl;
|
||||
g2_affine_t* g2_points_d;
|
||||
g2_projective_t* g2_result_d;
|
||||
cudaMalloc(&scalars_d, sizeof(scalar_t) * N);
|
||||
cudaMalloc(&g2_points_d, sizeof(g2_affine_t) * N);
|
||||
cudaMalloc(&g2_result_d, sizeof(g2_projective_t));
|
||||
cudaMemcpy(scalars_d, scalars, sizeof(scalar_t) * N, cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(g2_points_d, g2_points, sizeof(g2_affine_t) * N, cudaMemcpyHostToDevice);
|
||||
|
||||
std::cout << "Reconfiguring MSM to use on-device inputs" << std::endl;
|
||||
config.are_results_on_device = true;
|
||||
config.are_scalars_on_device = true;
|
||||
config.are_points_on_device = true;
|
||||
|
||||
std::cout << "Running MSM kernel with on-device inputs" << std::endl;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
cudaEventRecord(start, stream);
|
||||
msm::MSM<scalar_t, g2_affine_t, g2_projective_t>(scalars_d, g2_points_d, msm_size, config, g2_result_d);
|
||||
cudaEventRecord(stop, stream);
|
||||
cudaEventSynchronize(stop);
|
||||
cudaEventElapsedTime(&time, start, stop);
|
||||
cudaEventDestroy(start);
|
||||
cudaEventDestroy(stop);
|
||||
std::cout << "Kernel runtime: " << std::fixed << std::setprecision(3) << time * 1e-3 << " sec." << std::endl;
|
||||
cudaMemcpy(&g2_result, g2_result_d, sizeof(g2_projective_t), cudaMemcpyDeviceToHost);
|
||||
std::cout << g2_projective_t::to_affine(g2_result) << std::endl;
|
||||
|
||||
cudaFree(scalars_d);
|
||||
cudaFree(g2_points_d);
|
||||
cudaFree(g2_result_d);
|
||||
delete[] g2_points;
|
||||
delete[] scalars;
|
||||
cudaStreamDestroy(stream);
|
||||
return 0;
|
||||
}
|
||||
2
examples/c++/msm/run.sh
Executable file
@@ -0,0 +1,2 @@
|
||||
#!/bin/bash
|
||||
./build/example
|
||||
25
examples/c++/multi-gpu-poseidon/CMakeLists.txt
Normal file
@@ -0,0 +1,25 @@
|
||||
cmake_minimum_required(VERSION 3.18)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CUDA_STANDARD 17)
|
||||
set(CMAKE_CUDA_STANDARD_REQUIRED TRUE)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.24.0")
|
||||
set(CMAKE_CUDA_ARCHITECTURES ${CUDA_ARCH})
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES native) # on 3.24+, on earlier it is ignored, and the target is not passed
|
||||
endif ()
|
||||
project(icicle LANGUAGES CUDA CXX)
|
||||
|
||||
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr")
|
||||
set(CMAKE_CUDA_FLAGS_RELEASE "")
|
||||
set(CMAKE_CUDA_FLAGS_DEBUG "${CMAKE_CUDA_FLAGS_DEBUG} -g -G -O0")
|
||||
# change the path to your Icicle location
|
||||
include_directories("../../../icicle")
|
||||
add_executable(
|
||||
example
|
||||
example.cu
|
||||
)
|
||||
find_library(NVML_LIBRARY nvidia-ml PATHS /usr/local/cuda/targets/x86_64-linux/lib/stubs/ )
|
||||
target_link_libraries(example ${NVML_LIBRARY})
|
||||
set_target_properties(example PROPERTIES CUDA_SEPARABLE_COMPILATION ON)
|
||||
|
||||
52
examples/c++/multi-gpu-poseidon/README.md
Normal file
@@ -0,0 +1,52 @@
|
||||
# Icicle example: using multiple GPU to hash large dataset
|
||||
|
||||
## Best-Practices
|
||||
|
||||
This example builds on [single GPU Poseidon example](../poseidon/README.md) so we recommend to run it first.
|
||||
|
||||
## Key-Takeaway
|
||||
|
||||
Use `device_context::DeviceContext` variable to select GPU to use.
|
||||
Use C++ threads to compute `Icicle` primitives on different GPUs in parallel.
|
||||
|
||||
## Concise Usage Explanation
|
||||
|
||||
1. Include c++ threads
|
||||
|
||||
```c++
|
||||
#include <thread>
|
||||
```
|
||||
|
||||
2. Define a __thread function__. Importantly, device context `ctx` will hold the GPU id.
|
||||
|
||||
```c++
|
||||
void threadPoseidon(device_context::DeviceContext ctx, ...) {...}
|
||||
```
|
||||
|
||||
3. Initialize device contexts for different GPUs
|
||||
|
||||
```c++
|
||||
device_context::DeviceContext ctx0 = device_context::get_default_device_context();
|
||||
ctx0.device_id=0;
|
||||
device_context::DeviceContext ctx1 = device_context::get_default_device_context();
|
||||
ctx1.device_id=1;
|
||||
```
|
||||
|
||||
4. Finally, spawn the threads and wait for their completion
|
||||
|
||||
```c++
|
||||
std::thread thread0(threadPoseidon, ctx0, ...);
|
||||
std::thread thread1(threadPoseidon, ctx1, ...);
|
||||
thread0.join();
|
||||
thread1.join();
|
||||
```
|
||||
|
||||
## What's in the example
|
||||
|
||||
This is a **toy** example executing the first step of the Filecoin's Pre-Commit 2 phase: compute $2^{30}$ Poseison hashes for each column of $11 \times 2^{30}$ matrix.
|
||||
|
||||
1. Define the size of the example: $2^{30}$ won't fit on a typical machine, so we partition the problem into `nof_partitions`
|
||||
2. Hash two partitions in parallel on two GPUs
|
||||
3. Hash two partitions in series on one GPU
|
||||
4. Compare execution times
|
||||
|
||||
9
examples/c++/multi-gpu-poseidon/compile.sh
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Exit immediately on error
|
||||
set -e
|
||||
|
||||
rm -rf build
|
||||
mkdir -p build
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
148
examples/c++/multi-gpu-poseidon/example.cu
Normal file
@@ -0,0 +1,148 @@
|
||||
#include <iostream>
|
||||
#include <thread>
|
||||
#include <chrono>
|
||||
|
||||
#include <nvml.h>
|
||||
|
||||
// select the curve
|
||||
#define CURVE_ID 2
|
||||
#include "appUtils/poseidon/poseidon.cu"
|
||||
#include "utils/error_handler.cuh"
|
||||
|
||||
using namespace poseidon;
|
||||
using namespace curve_config;
|
||||
|
||||
void checkCudaError(cudaError_t error) {
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "CUDA error: " << cudaGetErrorString(error) << std::endl;
|
||||
// Handle the error, e.g., exit the program or throw an exception.
|
||||
}
|
||||
}
|
||||
|
||||
// these global constants go into template calls
|
||||
const int size_col = 11;
|
||||
|
||||
// this function executes the Poseidon thread
|
||||
void threadPoseidon(device_context::DeviceContext ctx, unsigned size_partition, scalar_t * layers, scalar_t * column_hashes, PoseidonConstants<scalar_t> * constants) {
|
||||
cudaError_t err_result = CHK_STICKY(cudaSetDevice(ctx.device_id));
|
||||
if (err_result != cudaSuccess) {
|
||||
std::cerr << "CUDA error: " << cudaGetErrorString(err_result) << std::endl;
|
||||
return;
|
||||
}
|
||||
// CHK_IF_RETURN(); I can't use it in a standard thread function
|
||||
PoseidonConfig column_config = {
|
||||
ctx, // ctx
|
||||
false, // are_inputes_on_device
|
||||
false, // are_outputs_on_device
|
||||
false, // input_is_a_state
|
||||
false, // aligned
|
||||
false, // loop_state
|
||||
false, // is_async
|
||||
};
|
||||
cudaError_t err = poseidon_hash<scalar_t, size_col+1>(layers, column_hashes, (size_t) size_partition, *constants, column_config);
|
||||
checkCudaError(err);
|
||||
}
|
||||
|
||||
using FpMilliseconds = std::chrono::duration<float, std::chrono::milliseconds::period>;
|
||||
#define START_TIMER(timer) auto timer##_start = std::chrono::high_resolution_clock::now();
|
||||
#define END_TIMER(timer, msg) printf("%s: %.0f ms\n", msg, FpMilliseconds(std::chrono::high_resolution_clock::now() - timer##_start).count());
|
||||
|
||||
|
||||
#define CHECK_ALLOC(ptr) if ((ptr) == nullptr) { \
|
||||
std::cerr << "Memory allocation for '" #ptr "' failed." << std::endl; \
|
||||
exit(EXIT_FAILURE); \
|
||||
}
|
||||
|
||||
int main() {
|
||||
const unsigned size_row = (1<<30);
|
||||
const unsigned nof_partitions = 64;
|
||||
const unsigned size_partition = size_row / nof_partitions;
|
||||
// layers is allocated only for one partition, need to reuse for different partitions
|
||||
const uint32_t size_layers = size_col * size_partition;
|
||||
|
||||
nvmlInit();
|
||||
unsigned int deviceCount;
|
||||
nvmlDeviceGetCount(&deviceCount);
|
||||
std::cout << "Available GPUs: " << deviceCount << std::endl;
|
||||
|
||||
for (unsigned int i = 0; i < deviceCount; ++i) {
|
||||
nvmlDevice_t device;
|
||||
nvmlMemory_t memory;
|
||||
char name[NVML_DEVICE_NAME_BUFFER_SIZE];
|
||||
nvmlDeviceGetHandleByIndex(i, &device);
|
||||
nvmlDeviceGetName(device, name, NVML_DEVICE_NAME_BUFFER_SIZE);
|
||||
nvmlDeviceGetMemoryInfo(device, &memory);
|
||||
std::cout << "Device ID: " << i << ", Type: " << name << ", Memory Total/Free (MiB) " << memory.total/1024/1024 << "/" << memory.free/1024/1024 << std::endl;
|
||||
}
|
||||
|
||||
const unsigned memory_partition = sizeof(scalar_t)*(size_col+1)*size_partition/1024/1024;
|
||||
std::cout << "Required Memory (MiB) " << memory_partition << std::endl;
|
||||
|
||||
//===============================================================================
|
||||
// Key: multiple devices are supported by device context
|
||||
//===============================================================================
|
||||
|
||||
device_context::DeviceContext ctx0 = device_context::get_default_device_context();
|
||||
ctx0.device_id=0;
|
||||
device_context::DeviceContext ctx1 = device_context::get_default_device_context();
|
||||
ctx1.device_id=1;
|
||||
|
||||
std::cout << "Allocate and initialize the memory for layers and hashes" << std::endl;
|
||||
scalar_t* layers0 = static_cast<scalar_t*>(malloc(size_layers * sizeof(scalar_t)));
|
||||
CHECK_ALLOC(layers0);
|
||||
scalar_t s = scalar_t::zero();
|
||||
for (unsigned i = 0; i < size_col*size_partition ; i++) {
|
||||
layers0[i] = s;
|
||||
s = s + scalar_t::one();
|
||||
}
|
||||
scalar_t* layers1 = static_cast<scalar_t*>(malloc(size_layers * sizeof(scalar_t)));
|
||||
CHECK_ALLOC(layers1);
|
||||
s = scalar_t::zero() + scalar_t::one();
|
||||
for (unsigned i = 0; i < size_col*size_partition ; i++) {
|
||||
layers1[i] = s;
|
||||
s = s + scalar_t::one();
|
||||
}
|
||||
|
||||
scalar_t* column_hash0 = static_cast<scalar_t*>(malloc(size_partition * sizeof(scalar_t)));
|
||||
CHECK_ALLOC(column_hash0);
|
||||
scalar_t* column_hash1 = static_cast<scalar_t*>(malloc(size_partition * sizeof(scalar_t)));
|
||||
CHECK_ALLOC(column_hash1);
|
||||
|
||||
PoseidonConstants<scalar_t> column_constants0, column_constants1;
|
||||
init_optimized_poseidon_constants<scalar_t>(size_col, ctx0, &column_constants0);
|
||||
cudaError_t err_result = CHK_STICKY(cudaSetDevice(ctx1.device_id));
|
||||
if (err_result != cudaSuccess) {
|
||||
std::cerr << "CUDA error: " << cudaGetErrorString(err_result) << std::endl;
|
||||
return;
|
||||
}
|
||||
init_optimized_poseidon_constants<scalar_t>(size_col, ctx1, &column_constants1);
|
||||
|
||||
std::cout << "Parallel execution of Poseidon threads" << std::endl;
|
||||
START_TIMER(parallel);
|
||||
std::thread thread0(threadPoseidon, ctx0, size_partition, layers0, column_hash0, &column_constants0);
|
||||
std::thread thread1(threadPoseidon, ctx1, size_partition, layers1, column_hash1, &column_constants1);
|
||||
|
||||
// Wait for the threads to finish
|
||||
thread0.join();
|
||||
thread1.join();
|
||||
END_TIMER(parallel,"2 GPUs");
|
||||
std::cout << "Output Data from Thread 0: ";
|
||||
std::cout << column_hash0[0] << std::endl;
|
||||
std::cout << "Output Data from Thread 1: ";
|
||||
std::cout << column_hash1[0] << std::endl;
|
||||
|
||||
std::cout << "Sequential execution of Poseidon threads" << std::endl;
|
||||
START_TIMER(sequential);
|
||||
std::thread thread2(threadPoseidon, ctx0, size_partition, layers0, column_hash0, &column_constants0);
|
||||
thread2.join();
|
||||
std::thread thread3(threadPoseidon, ctx0, size_partition, layers1, column_hash1, &column_constants0);
|
||||
thread3.join();
|
||||
END_TIMER(sequential,"1 GPU");
|
||||
std::cout << "Output Data from Thread 2: ";
|
||||
std::cout << column_hash0[0] << std::endl;
|
||||
std::cout << "Output Data from Thread 3: ";
|
||||
std::cout << column_hash1[0] << std::endl;
|
||||
|
||||
nvmlShutdown();
|
||||
return 0;
|
||||
}
|
||||
2
examples/c++/multi-gpu-poseidon/run.sh
Executable file
@@ -0,0 +1,2 @@
|
||||
#!/bin/bash
|
||||
./build/example
|
||||
23
examples/c++/multiply/.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,23 @@
|
||||
# Make sure NVIDIA Container Toolkit is installed on your host
|
||||
|
||||
# Use NVIDIA base image
|
||||
FROM nvidia/cuda:12.2.0-devel-ubuntu22.04
|
||||
|
||||
# Update and install dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
nsight-systems-12.2 \
|
||||
cmake \
|
||||
protobuf-compiler \
|
||||
curl \
|
||||
build-essential \
|
||||
git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Clone Icicle from a GitHub repository
|
||||
RUN git clone https://github.com/ingonyama-zk/icicle.git /icicle
|
||||
|
||||
# Set the working directory in the container
|
||||
WORKDIR /icicle-example
|
||||
|
||||
# Specify the default command for the container
|
||||
CMD ["/bin/bash"]
|
||||
24
examples/c++/multiply/.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"name": "Icicle Examples - Multiply",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile"
|
||||
},
|
||||
"workspaceMount": "source=${localWorkspaceFolder}/.,target=/icicle-example,type=bind",
|
||||
"workspaceFolder": "/icicle-example",
|
||||
"runArgs": [
|
||||
"--gpus",
|
||||
"all"
|
||||
],
|
||||
"postCreateCommand": [
|
||||
"nvidia-smi"
|
||||
],
|
||||
"customizations": {
|
||||
"vscode": {
|
||||
"extensions": [
|
||||
"ms-vscode.cmake-tools",
|
||||
"ms-azuretools.vscode-docker",
|
||||
"ms-vscode.cpptools-extension-pack"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
25
examples/c++/multiply/CMakeLists.txt
Normal file
@@ -0,0 +1,25 @@
|
||||
cmake_minimum_required(VERSION 3.18)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CUDA_STANDARD 17)
|
||||
set(CMAKE_CUDA_STANDARD_REQUIRED TRUE)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.24.0")
|
||||
set(CMAKE_CUDA_ARCHITECTURES ${CUDA_ARCH})
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES native) # on 3.24+, on earlier it is ignored, and the target is not passed
|
||||
endif ()
|
||||
project(icicle LANGUAGES CUDA CXX)
|
||||
|
||||
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr")
|
||||
set(CMAKE_CUDA_FLAGS_RELEASE "")
|
||||
set(CMAKE_CUDA_FLAGS_DEBUG "${CMAKE_CUDA_FLAGS_DEBUG} -g -G -O0")
|
||||
# change the path to your Icicle location
|
||||
include_directories("../../../icicle")
|
||||
add_executable(
|
||||
example
|
||||
example.cu
|
||||
)
|
||||
find_library(NVML_LIBRARY nvidia-ml PATHS /usr/local/cuda/targets/x86_64-linux/lib/stubs/ )
|
||||
target_link_libraries(example ${NVML_LIBRARY})
|
||||
set_target_properties(example PROPERTIES CUDA_SEPARABLE_COMPILATION ON)
|
||||
|
||||
41
examples/c++/multiply/README.md
Normal file
@@ -0,0 +1,41 @@
|
||||
# Icicle example: Multiplication
|
||||
|
||||
## Best-Practices
|
||||
|
||||
We recommend to run our examples in [ZK-containers](../../ZK-containers.md) to save your time and mental energy.
|
||||
|
||||
## Key-Takeaway
|
||||
|
||||
`Icicle` accelerates multiplication operation `*` using [Karatsuba algorithm](https://en.wikipedia.org/wiki/Karatsuba_algorithm)
|
||||
|
||||
## Concise Usage Explanation
|
||||
|
||||
Define a `CURVE_ID` and include curve configuration header:
|
||||
|
||||
```c++
|
||||
#define CURVE_ID 1
|
||||
#include "curves/curve_config.cuh"
|
||||
```
|
||||
|
||||
The values of `CURVE_ID` for different curves are in the above header. Multiplication is accelerated both for field scalars and point fields.
|
||||
|
||||
```c++
|
||||
using namespace curve_config;
|
||||
scalar_t a;
|
||||
point_field_t b;
|
||||
```
|
||||
|
||||
## Running the example
|
||||
|
||||
- `cd` to your example directory
|
||||
- compile with `./compile.sh`
|
||||
- run with `./run.sh`
|
||||
|
||||
## What's in the example
|
||||
|
||||
1. Define the parameters for the example such as vector size
|
||||
2. Generate random vectors on-host
|
||||
3. Copy them on-device
|
||||
4. Execute element-wise vector multiplication on-device
|
||||
5. Copy results on-host
|
||||
|
||||
9
examples/c++/multiply/compile.sh
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Exit immediately on error
|
||||
set -e
|
||||
|
||||
rm -rf build
|
||||
mkdir -p build
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||