Gennet accepts single command line parameter and reads config from global json file

This commit is contained in:
Jordi Arranz
2023-01-13 11:25:26 +00:00
parent ac7ae1c3fe
commit e05353523c
6 changed files with 333 additions and 1 deletions

View File

@@ -1,6 +1,6 @@
{
"enclave_name" : "wakurtosis",
"topology_path" : "./config/network_topology_auto/",
"topology_path" : "../config/network_topology_auto/",
"same_toml_configuration": true,
"simulation_time": 60,
"message_rate": 10,

12
gennet-module/Readme.md Normal file
View File

@@ -0,0 +1,12 @@
This repo contains scripts to generate network models (in JSON) and waku configuration files (in TOMLs) for wakukurtosis runs.
## generate_network.py
generate_network.py generates one network and per-node configuration files. The tool is configurable with specified number of nodes, topics, network types, node types and number of subnets. Use with Python3. Comment out the `#draw(fname, H)` line to visualise the generated graph.
> usage: $./generate_network --help
## batch_gen.sh
batch_gen.sh can generate given number of Waku networks and outputs them to a directory. Please make sure that the output directory does NOT exist; both relative and absolute paths work. The Wakunode parameters are generated at random; edit the MIN and MAX for finer control. The script requires bc & /dev/urandom.<br>
> usage: $./batch_gen.sh <output-dir> <#number of networks needed> </br>

50
gennet-module/batch_gen.sh Executable file
View File

@@ -0,0 +1,50 @@
#!/bin/sh
#MAX and MIN for topics and num nodes
MIN=5
MAX=100
#requires bc
getrand(){
orig=$(od -An -N1 -i /dev/urandom)
range=`echo "$MIN + ($orig % ($MAX - $MIN + 1))" | bc`
RANDOM=$range
}
getrand1(){
orig=$(od -An -N1 -i /dev/urandom)
range=`echo "$MIN + ($orig % ($MAX - $MIN + 1))" | bc`
return range
#getrand1 # call the fun and use the return value
#n=$?
}
if [ "$#" -ne 2 ] || [ $2 -le 0 ] ; then
echo "usage: $0 <output dir> <#json files needed>" >&2
exit 1
fi
path=$1
nfiles=$2
mkdir -p $path
echo "Ok, will generate $nfiles networks & put them under '$path'."
nwtype="newmanwattsstrogatz"
nodetype="desktop"
for i in $(seq $nfiles)
do
getrand
n=$((RANDOM+1))
getrand
t=$((RANDOM+1))
getrand
s=`expr $((RANDOM+1)) % $n`
dirname="$path/$i/Waku"
mkdir "$path/$i"
echo "Generating ./generate_network.py --dirname $dirname --num-nodes $n --num-topics $t --nw-type $nwtype --node-type $nodetype --num-partitions 1 --num-subnets $s ...."
$(./generate_network.py --dirname $dirname --num-nodes $n --num-topics $t --nw-type $nwtype --node-type $nodetype --num-partitions 1 --num-subnets $s)
done

3
gennet-module/build.sh Normal file
View File

@@ -0,0 +1,3 @@
#!/bin/sh
# pip freeze > requirements.txt
docker image build --progress=plain -t gennet:0.0.1 ./

243
gennet-module/generate_network.py Executable file
View File

@@ -0,0 +1,243 @@
#! /usr/bin/env python3
import matplotlib.pyplot as plt
import networkx as nx
import random, math
import json
import sys, os
import string
import typer
from enum import Enum
# Enums & Consts
# To add a new node type, add appropriate entries to the nodeType and nodeTypeSwitch
class nodeType(Enum):
DESKTOP = "desktop" # waku desktop config
MOBILE = "mobile" # waku mobile config
nodeTypeSwitch = {
nodeType.DESKTOP : "rpc-admin = true\nkeep-alive = true\n",
nodeType.MOBILE : "rpc-admin = true\nkeep-alive = true\n"
}
# To add a new network type, add appropriate entries to the networkType and networkTypeSwitch
# the networkTypeSwitch is placed before generate_network(): fwd declaration mismatch with typer/python :/
class networkType(Enum):
CONFIGMODEL = "configmodel"
SCALEFREE = "scalefree" # power law
NEWMANWATTSSTROGATZ = "newmanwattsstrogatz" # mesh, smallworld
BARBELL = "barbell" # partition
BALANCEDTREE = "balancedtree" # committees?
STAR = "star" # spof
NW_DATA_FNAME = "network_data.json"
NODE_PREFIX = "waku"
SUBNET_PREFIX = "subnetwork"
### I/O related fns ##############################################################
# Dump to a json file
def write_json(dirname, json_dump):
fname = os.path.join(dirname, NW_DATA_FNAME)
with open(fname, "w") as f:
json.dump(json_dump, f, indent=2)
def write_toml(dirname, node_name, toml):
fname = os.path.join(dirname, f"{node_name}.toml")
with open(fname, "w") as f:
f.write(toml)
# Draw the network and output the image to a file; does not account for subnets yet
def draw(dirname, H):
nx.draw(H, pos=nx.kamada_kawai_layout(H), with_labels=True)
fname = os.path.join(dirname, NW_DATA_FNAME)
plt.savefig(f"{os.path.splitext(fname)[0]}.png", format="png")
plt.show()
# Has trouble with non-integer/non-hashable keys
def read_json(fname):
with open(fname) as f:
jdata = json.load(f)
return nx.node_link_graph(jdata)
# check if the required dir can be created
def exists_or_nonempty(dirname):
if not os.path.exists(dirname):
return False
elif not os.path.isfile(dirname) and os.listdir(dirname):
print(f"{dirname}: exists and not empty")
return True
elif os.path.isfile(dirname):
print(f"{dirname}: exists but not a directory")
return True
else:
return False
### topics related fns #############################################################
# Generate a random string of upper case chars
def generate_random_string(n):
return "".join(random.choice(string.ascii_uppercase) for _ in range(n))
# Generate the topics - topic followed by random UC chars - Eg, topic_XY"
def generate_topics(num_topics):
topic_len = int(math.log(num_topics)/math.log(26)) + 1 # base is 26 - upper case letters
topics = {i: f"topic_{generate_random_string(topic_len)}" for i in range(num_topics)}
return topics
# Get a random sub-list of topics
def get_random_sublist(topics):
n = len(topics)
lo = random.randint(0, n - 1)
hi = random.randint(lo + 1, n)
sublist = []
for i in range(lo, hi):
sublist.append(topics[i])
return sublist
### network processing related fns #################################################
# Network Types
def generate_config_model(n):
#degrees = nx.random_powerlaw_tree_sequence(n, tries=10000)
degrees = [random.randint(1, n) for i in range(n)]
if (sum(degrees)) % 2 != 0: # adjust the degree to be even
degrees[-1] += 1
return nx.configuration_model(degrees) # generate the graph
def generate_scalefree_graph(n):
return nx.scale_free_graph(n)
# n must be larger than k=D=3
def generate_newmanwattsstrogatz_graph(n):
return nx.newman_watts_strogatz_graph(n, 3, 0.5)
def generate_barbell_graph(n):
return nx.barbell_graph(int(n/2), 1)
def generate_balanced_tree(n, fanout=3):
height = int(math.log(n)/math.log(fanout))
return nx.balanced_tree(fanout, height)
def generate_star_graph(n):
return nx.star_graph(n)
networkTypeSwitch = {
networkType.CONFIGMODEL : generate_config_model,
networkType.SCALEFREE : generate_scalefree_graph,
networkType.NEWMANWATTSSTROGATZ : generate_newmanwattsstrogatz_graph,
networkType.BARBELL : generate_barbell_graph,
networkType.BALANCEDTREE: generate_balanced_tree,
networkType.STAR : generate_star_graph
}
# Generate the network from nw type
def generate_network(n, network_type):
return postprocess_network(networkTypeSwitch.get(network_type)(n))
# Label the generated network with prefix
def postprocess_network(G):
G = nx.Graph(G) # prune out parallel/multi edges
G.remove_edges_from(nx.selfloop_edges(G)) # remove the self-loops
mapping = {i: f"{NODE_PREFIX}_{i}" for i in range(len(G))}
return nx.relabel_nodes(G, mapping) # label the nodes
def generate_subnets(G, num_subnets):
n = len(G.nodes)
if num_subnets == n: # if num_subnets == size of the network
return {f"{NODE_PREFIX}_{i}": f"{SUBNET_PREFIX}_{i}" for i in range(n)}
lst = list(range(n))
random.shuffle(lst)
offsets = sorted(random.sample(range(0, n), num_subnets - 1))
offsets.append(n-1)
start = 0
subnets = {}
subnet_id = 0
for end in offsets:
for i in range(start, end+1):
subnets[f"{NODE_PREFIX}_{lst[i]}"] = f"{SUBNET_PREFIX}_{subnet_id}"
start = end
subnet_id += 1
return subnets
### file format related fns ###########################################################
#Generate per node toml configs
def generate_toml(topics, node_type=nodeType.DESKTOP):
topic_str = " ".join(get_random_sublist(topics)) # space separated topics
return f"{nodeTypeSwitch.get(node_type)}topics = \"{topic_str}\"\n"
# Generates network-wide json and per-node toml and writes them
def generate_and_write_files(dirname, num_topics, num_subnets, G):
topics = generate_topics(num_topics)
subnets = generate_subnets(G, num_subnets)
json_dump = {}
for node in G.nodes:
write_toml(dirname, node, generate_toml(topics)) # per node toml
json_dump[node] = {}
json_dump[node]["static_nodes"] = []
for edge in G.edges(node):
json_dump[node]["static_nodes"].append(edge[1])
json_dump[node][SUBNET_PREFIX] = subnets[node]
write_json(dirname, json_dump) # network wide json
### the main ##########################################################################
def main(config_file: str = "../config/config.json"):
""" Load config file """
try:
with open(config_file, 'r') as f:
config_obj = json.load(f)
except Exception as e:
print(e)
sys.exit(1)
# sanity checks
if config_obj['num_partitions'] > 1:
raise ValueError(f"--num-partitions {config_obj['num_partitions']}, Sorry, we do not yet support partitions")
if config_obj['num_subnets'] > config_obj['num_nodes']:
raise ValueError(f"num_subnets must be <= num_nodes: num_subnets={config_obj['num_subnets']}, num_nodes={config_obj['num_nodes']}")
if config_obj['num_subnets'] == -1:
config_obj['num_subnets'] = config_obj['num_nodes']
# Generate the network
G = generate_network(config_obj['num_nodes'], networkType(config_obj['network_type']))
# Refuse to overwrite non-empty dirs
if exists_or_nonempty(config_obj['topology_path']):
sys.exit(1)
os.makedirs(config_obj['topology_path'], exist_ok=True)
# Generate file format specific data structs and write the files; optionally, draw the network
generate_and_write_files(config_obj['topology_path'], config_obj['num_topics'], config_obj['num_subnets'], G)
#draw(dirname, G)
if __name__ == "__main__":
typer.run(main)

View File

@@ -0,0 +1,24 @@
asyncio==3.4.3
certifi==2022.12.7
charset-normalizer==2.1.1
click==8.1.3
contourpy==1.0.6
cycler==0.11.0
fonttools==4.38.0
idna==3.4
jsonrpcclient==4.0.2
kiwisolver==1.4.4
matplotlib==3.6.2
networkx==2.8.8
numpy==1.24.0
packaging==22.0
Pillow==9.3.0
pyparsing==3.0.9
python-dateutil==2.8.2
PyYAML==6.0
requests==2.28.1
scipy==1.10.0
six==1.16.0
tqdm==4.64.1
typer==0.7.0
urllib3==1.26.13