mirror of
https://github.com/MAGICGrants/Monero-Dataset-Pipeline.git
synced 2026-01-09 13:37:57 -05:00
- fixed NN plots
This commit is contained in:
@@ -89,20 +89,20 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
scaler = StandardScaler().fit(X_Validation)
|
||||
X_Validation = scaler.transform(X_Validation)
|
||||
|
||||
# fix off by one error
|
||||
for i in range(len(y_test_copy)):
|
||||
y_test_copy[i] = y_test_copy[i] - 1
|
||||
for i in range(len(y_val_copy)):
|
||||
y_val_copy[i] = y_val_copy[i] - 1
|
||||
|
||||
for i in range(10):
|
||||
from keras_visualizer import visualizer
|
||||
model = Sequential()
|
||||
model.add(Dense(11, input_shape=(X_train.shape[1],), activation='relu'))
|
||||
#model.add(Dense(32, activation='relu'))
|
||||
model.add(Dense(64, activation='relu'))
|
||||
#model.add(Dense(128, activation='relu'))
|
||||
model.add(Dropout(.1))
|
||||
#model.add(Dense(256, activation='relu'))
|
||||
#model.add(Dense(128, activation='relu'))
|
||||
model.add(Dense(64, activation='relu'))
|
||||
#model.add(Dropout(.3))
|
||||
model.add(Dense(32, activation='relu'))
|
||||
#model.add(Dropout(.2))
|
||||
model.add(Dense(11))
|
||||
model.add(BatchNormalization())
|
||||
model.add(Activation('softmax'))
|
||||
@@ -133,9 +133,7 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
score = model.evaluate(X_test, y_test, verbose=1)
|
||||
print(score[1])
|
||||
|
||||
y_pred = list(model.predict(X_Validation).argmax(axis=1))
|
||||
for i in range(len(y_pred)):
|
||||
y_pred[i] = y_pred[i] + 1
|
||||
# y_pred = list(model.predict(X_Validation).argmax(axis=1))
|
||||
#confusion_mtx(y_Validation, y_pred)
|
||||
|
||||
# Metrics
|
||||
@@ -145,9 +143,9 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
weighted_f1 = f1_score(y_test_copy, y_pred, average='macro')
|
||||
print('Weighted F1-score: {:.2f}'.format(weighted_f1))
|
||||
out_of_sample_f1.append(weighted_f1)
|
||||
|
||||
if stagenet:
|
||||
cm = confusion_matrix(y_test_copy, y_pred)
|
||||
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
|
||||
# Heat map
|
||||
plt.figure(figsize=(10, 7))
|
||||
sn.heatmap(cm, annot=True)
|
||||
@@ -156,6 +154,7 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
plt.savefig("./models/NN/stagenet/CM_epochs_" + str(EPOCHS) + "_batch_size_" + str(BATCH_SIZE) + "_i_" + str(i) + "_accuracy_" + str(weighted_f1) + ".png")
|
||||
else:
|
||||
cm = confusion_matrix(y_test_copy, y_pred)
|
||||
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
|
||||
# Heat map
|
||||
plt.figure(figsize=(10, 7))
|
||||
sn.heatmap(cm, annot=True)
|
||||
|
||||
Reference in New Issue
Block a user