fine tune with shark (#211)

This commit is contained in:
Daniel Garvey
2022-08-04 13:14:57 -05:00
committed by GitHub
parent 90fddc6cb0
commit 7dc0a4f74d
2 changed files with 195 additions and 0 deletions

13
tank/README.md Normal file
View File

@@ -0,0 +1,13 @@
To run the fine tuning example, from the root SHARK directory, run:
```shell
IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pip install jupyter tf-models-nightly tf-datasets
jupyter-notebook
```
if running from a google vm, you can view jupyter notebooks on your local system with:
```shell
gcloud compute ssh <YOUR_INSTANCE_DETAILS> --ssh-flag="-N -L localhost:8888:localhost:8888"
```

View File

@@ -0,0 +1,182 @@
import numpy as np
from iree import runtime as ireert
from iree.tf.support import module_utils
from iree.compiler import tf as tfc
from iree.compiler import compile_str
import tensorflow as tf
try:
import tensorflow_datasets as tfds
import tensorflow_models as tfm
from official.nlp.modeling import layers
from official.nlp.modeling import networks
from official.nlp.modeling.models import bert_classifier
except ModuleNotFoundError:
print(
"tensorflow models or datasets not found please run the following command with your virtual env active:\npip install tf-models-nightly tf-datasets"
)
import json
import time
import os
gs_folder_bert = "gs://cloud-tpu-checkpoints/bert/v3/uncased_L-12_H-768_A-12"
tf.io.gfile.listdir(gs_folder_bert)
vocab_size = 100
NUM_CLASSES = 2
SEQUENCE_LENGTH = 128
BATCH_SIZE = 1
# Create a set of 2-dimensional inputs
bert_input = [
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
]
class BertModule(tf.Module):
def __init__(self):
super(BertModule, self).__init__()
dict_outputs = False
bert_config_file = os.path.join(gs_folder_bert, "bert_config.json")
config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read())
encoder_config = tfm.nlp.encoders.EncoderConfig(
{"type": "bert", "bert": config_dict}
)
bert_encoder = tfm.nlp.encoders.build_encoder(encoder_config)
# Create a BERT trainer with the created network.
bert_trainer_model = bert_classifier.BertClassifier(
bert_encoder, num_classes=NUM_CLASSES
)
bert_trainer_model.summary()
checkpoint = tf.train.Checkpoint(encoder=bert_encoder)
checkpoint.read(
os.path.join(gs_folder_bert, "bert_model.ckpt")
).assert_consumed()
# Invoke the trainer model on the inputs. This causes the layer to be built.
self.m = bert_trainer_model
self.m.predict = lambda x: self.m.call(x, training=False)
self.predict = tf.function(input_signature=[bert_input])(
self.m.predict
)
self.m.learn = lambda x, y: self.m.call(x, training=False)
self.loss = tf.keras.losses.SparseCategoricalCrossentropy()
self.optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2)
@tf.function(
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:
# Capture the gradients from forward prop...
probs = self.m.call(inputs, training=True)
loss = self.loss(labels, probs)
# ...and use them to update the model's weights.
variables = self.m.trainable_variables
gradients = tape.gradient(loss, variables)
self.optimizer.apply_gradients(zip(gradients, variables))
return loss
if __name__ == "__main__":
glue, info = tfds.load("glue/mrpc", with_info=True, batch_size=BATCH_SIZE)
tokenizer = tfm.nlp.layers.FastWordpieceBertTokenizer(
vocab_file=os.path.join(gs_folder_bert, "vocab.txt"), lower_case=True
)
max_seq_length = SEQUENCE_LENGTH
packer = tfm.nlp.layers.BertPackInputs(
seq_length=max_seq_length,
special_tokens_dict=tokenizer.get_special_tokens_dict(),
)
class BertInputProcessor(tf.keras.layers.Layer):
def __init__(self, tokenizer, packer):
super().__init__()
self.tokenizer = tokenizer
self.packer = packer
def call(self, inputs):
tok1 = self.tokenizer(inputs["sentence1"])
tok2 = self.tokenizer(inputs["sentence2"])
packed = self.packer([tok1, tok2])
if "label" in inputs:
return packed, inputs["label"]
else:
return packed
bert_inputs_processor = BertInputProcessor(tokenizer, packer)
glue_train = glue["train"].map(bert_inputs_processor).prefetch(1)
glue_validation = glue["validation"].map(bert_inputs_processor).prefetch(1)
glue_test = glue["test"].map(bert_inputs_processor).prefetch(1)
# base tensorflow model
bert_model = BertModule()
# Compile the model using IREE
compiler_module = tfc.compile_module(
bert_model, exported_names=["learn"], import_only=True
)
# choose from dylib-llvm-aot or cuda
backend = "dylib-llvm-aot"
if backend == "dylib-llvm-aot":
args = [
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]
backend_config = "dylib"
else:
backend_config = "cuda"
args = [
"--iree-cuda-llvm-target-arch=sm_80",
"--iree-hal-cuda-disable-loop-nounroll-wa",
"--iree-enable-fusion-with-reduction-ops",
]
flatbuffer_blob = compile_str(
compiler_module,
target_backends=[backend],
extra_args=args,
input_type="mhlo",
)
# Save module as MLIR file in a directory
vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)
tracer = ireert.Tracer(os.getcwd())
config = ireert.Config("local-sync", tracer)
ctx = ireert.SystemContext(config=config)
ctx.add_vm_module(vm_module)
BertCompiled = ctx.modules.module
# compare output losses:
iterations = 10
for i in range(iterations):
example_inputs, example_labels = next(iter(glue_train))
example_labels = tf.cast(example_labels, tf.int32)
example_inputs = [value for key, value in example_inputs.items()]
# iree version
iree_loss = BertCompiled.learn(
example_inputs, example_labels
).to_host()
# base tensorflow
tf_loss = np.array(bert_model.learn(example_inputs, example_labels))
print(np.allclose(iree_loss, tf_loss))